找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory; Joseph Rotman Textbook 19901st edition Springer-Verlag New York Inc. 1990 Galois group.Galois theory.Group theory.Maxima.al

[復(fù)制鏈接]
樓主: 債務(wù)人
21#
發(fā)表于 2025-3-25 03:51:20 | 只看該作者
22#
發(fā)表于 2025-3-25 07:55:34 | 只看該作者
Prime Ideals and Maximal IdealsAn ideal . in a ring . is called . if . ≠ . and . ∈ . implies . ∈ . or . ∈
23#
發(fā)表于 2025-3-25 11:39:29 | 只看該作者
Finite FieldsThe . of a field . is the intersection of all the subfields of
24#
發(fā)表于 2025-3-25 17:04:02 | 只看該作者
Irreducible PolynomialsOur next project is to find some criteria that a polynomial be irreducible; this is usually difficult, and it is unsolved in general.
25#
發(fā)表于 2025-3-25 20:21:08 | 只看該作者
26#
發(fā)表于 2025-3-26 01:05:39 | 只看該作者
Splitting FieldsWe have already observed that if F is a subfield of ., then . may be viewed as a vector space over
27#
發(fā)表于 2025-3-26 07:55:46 | 只看該作者
28#
發(fā)表于 2025-3-26 09:28:38 | 只看該作者
The Galois GroupThe next lemma, though very easy to prove, is fundamental.
29#
發(fā)表于 2025-3-26 16:40:48 | 只看該作者
Primitive Roots of UnityThe hypothesis in Theorem 40 that . contain certain roots of unity can be dropped, but we give a preliminary discussion from group theory before proving this.
30#
發(fā)表于 2025-3-26 18:29:45 | 只看該作者
Insolvability of the QuinticRecall Theorem A21: If . is a group having a solvable normal subgroup . such that . is solvable, then . is solvable. Here is the improved version of Theorem 40 which needs no assumption about roots of unity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳新县| 辽中县| 资兴市| 伊川县| 运城市| 肇东市| 扶绥县| 宁陵县| 庆阳市| 洛扎县| 阳泉市| 绥德县| 上栗县| 彭水| 六盘水市| 将乐县| 洱源县| 东海县| 辽中县| 静安区| 四川省| 扎赉特旗| 什邡市| 温泉县| 慈溪市| 吉林省| 崇左市| 新津县| 连平县| 茶陵县| 鹤峰县| 洱源县| 广州市| 泽库县| 宝山区| 通道| 肥西县| 家居| 靖州| 新津县| 邵阳市|