找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[復(fù)制鏈接]
樓主: emanate
41#
發(fā)表于 2025-3-28 17:26:21 | 只看該作者
Strongly Real Beauville Groups III,ny attractive geometric properties several of which are dictated by properties of the group .. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the gr
42#
發(fā)表于 2025-3-28 20:46:58 | 只看該作者
,Arithmetic Chern–Simons Theory I,ctra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons functionals on spaces of Galois representations. In the highly speculative Sect.?., we consider the far-fetched possibility of using Chern–Simons theory to construct .-functions.
43#
發(fā)表于 2025-3-28 22:59:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:17 | 只看該作者
,Dessins d’Enfants and Brauer Configuration Algebras,relations induced by the monodromy of the dessin d’enfant. We show that the dimension of the Brauer configuration algebra associated to a dessin d’enfant and the dimension of the centre of this algebra are invariant under the action of the absolute Galois group. We give some examples of well-known a
45#
發(fā)表于 2025-3-29 08:52:50 | 只看該作者
,On the Elliptic Kashiwara–Vergne Lie Algebra,y Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality isomorphisms associated to topological fundamental groups of surfaces, and the Lie algebra . defined using mould theoretic techniques arising from multiple zeta theory by Raphael and Schneps, and show that they coincide.
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
47#
發(fā)表于 2025-3-29 17:11:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:00:23 | 只看該作者
49#
發(fā)表于 2025-3-30 03:45:27 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 楚雄市| 安化县| 九江县| 枣庄市| 咸丰县| 通河县| 孙吴县| 泗洪县| 昆明市| 修武县| 昌乐县| 定远县| 隆尧县| 新河县| 瑞金市| 闸北区| 蒙山县| 固镇县| 天气| 延川县| 安仁县| 乌恰县| 黑山县| 洱源县| 崇信县| 禹城市| 墨竹工卡县| SHOW| 确山县| 临夏县| 天峻县| 临安市| 姜堰市| 松滋市| 西乌珠穆沁旗| 确山县| 泰来县| 沙河市| 宁晋县| 涪陵区|