找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galerkin Finite Element Methods for Parabolic Problems; Vidar Thomée Book 2006Latest edition Springer-Verlag GmbH Germany 2006 Approximati

[復(fù)制鏈接]
樓主: Enlightening
41#
發(fā)表于 2025-3-28 18:14:47 | 只看該作者
42#
發(fā)表于 2025-3-28 21:59:30 | 只看該作者
The , and , Methods,ulate the discrete problem. For simplicity we shall content ourselves with describing the situation in the case of a simple selfadjoint parabolic equation in one space dimension, and only study spatially semidiscrete methods.
43#
發(fā)表于 2025-3-29 02:22:19 | 只看該作者
A Mixed Method,is formulation the gradient of the solution is introduced as a separate dependent variable, the approximation of which is sought in a different finite element space than the solution itself. One advantage of this procedure is that the gradient of the solution may be approximated to the same order of
44#
發(fā)表于 2025-3-29 04:15:00 | 只看該作者
45#
發(fā)表于 2025-3-29 08:24:22 | 只看該作者
https://doi.org/10.1007/3-540-33122-0Approximation; Galerkin methods; differential equations; finite element method; finite element theory; ma
46#
發(fā)表于 2025-3-29 11:42:46 | 只看該作者
978-3-642-06967-3Springer-Verlag GmbH Germany 2006
47#
發(fā)表于 2025-3-29 15:33:14 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:05 | 只看該作者
https://doi.org/10.1007/978-3-319-58969-5In this introductory chapter we shall study the standard Galerkin finite element method for the approximate solution of the model initial-boundary value problem for the heat equation
49#
發(fā)表于 2025-3-30 02:07:24 | 只看該作者
Theatre at the End of the WorldIn this chapter we shall study the numerical solution of a singular parabolic equation in one space dimension which arises after reduction by polar coordinates of a radially symmetric parabolic equation in three space dimensions. We shall analyze and compare finite element discretizations based on two different variational formulations.
50#
發(fā)表于 2025-3-30 07:49:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 顺平县| 怀仁县| 老河口市| 福海县| 乐都县| 五大连池市| 太仓市| 巫溪县| 临清市| 古浪县| 锦州市| 汝阳县| 察隅县| 镶黄旗| 河南省| 武陟县| 鹤峰县| 千阳县| 昌江| 营口市| 高淳县| 卢氏县| 武鸣县| 民乐县| 毕节市| 合作市| 清原| 丹东市| 温泉县| 班玛县| 拉孜县| 巴青县| 金塔县| 延边| 台山市| 长沙县| 额济纳旗| 黔江区| 崇仁县| 仪征市|