找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galerkin Finite Element Methods for Parabolic Problems; Vidar Thomée Book 2006Latest edition Springer-Verlag GmbH Germany 2006 Approximati

[復(fù)制鏈接]
樓主: Enlightening
31#
發(fā)表于 2025-3-27 00:41:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:26:56 | 只看該作者
33#
發(fā)表于 2025-3-27 06:26:31 | 只看該作者
34#
發(fā)表于 2025-3-27 12:34:51 | 只看該作者
Single Step Fully Discrete Schemes for the Inhomogeneous Equation,. Following the approach of Chapter 7 we shall first consider discretization in time of an ordinary differential equation in a Hilbert space setting, and then apply our results to the spatially discrete equation. In view of the work in Chapter 7 for the homogeneous equation with given initial data,
35#
發(fā)表于 2025-3-27 15:01:15 | 只看該作者
36#
發(fā)表于 2025-3-27 19:53:32 | 只看該作者
Multistep Backward Difference Methods,ultistep backward difference quotient of maximum order consistent with the number of time steps involved. We show that when this order is at most 6, then the method is stable and has a smoothing property analogous to that of single step methods of type IV. We shall use these properties to derive bot
37#
發(fā)表于 2025-3-27 22:26:01 | 只看該作者
Incomplete Iterative Solution of the Algebraic Systems at the Time Levels,equations has to be solved at each time level of the time stepping procedure, and our analysis has always assumed that these systems are solved exactly. Because in applications these systems are of high dimension, direct methods are most often not appropriate, and iterative methods have to be used.
38#
發(fā)表于 2025-3-28 02:17:37 | 只看該作者
The Discontinuous Galerkin Time Stepping Method,es by means of a Galerkin finite element method, which results in a system of ordinary differential equations with respect to time, and then applying a finite difference type time stepping method to this system to define a fully discrete solution. In this chapter, we shall apply the Galerkin method
39#
發(fā)表于 2025-3-28 09:39:00 | 只看該作者
A Nonlinear Problem,e restrict our attention to the situation in the beginning of Chapter 1, with a convex plane domain and with piecewise linear approximating functions. We also consider the problem on a finite interval . = (0, . in time; some of the constants in our estimates will depend on ., without explicit mentio
40#
發(fā)表于 2025-3-28 13:06:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新晃| 鹿邑县| 安福县| 虞城县| 东兴市| 陵川县| 康乐县| 襄樊市| 石渠县| 公安县| 贡觉县| 台湾省| 疏勒县| 麻栗坡县| 梁平县| 措勤县| 两当县| 简阳市| 鹰潭市| 莱州市| 大同县| 达孜县| 集贤县| 当雄县| 潞城市| 广饶县| 岳普湖县| 湖口县| 高州市| 沙河市| 许昌县| 瑞丽市| 文成县| 沙坪坝区| 怀柔区| 满城县| 靖宇县| 古田县| 杭州市| 来安县| 甘南县|