找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: GPU Ray Tracing in Non-Euclidean Spaces; Tiago Novello,Vinícius da Silva,Luiz Velho Book 2022 Springer Nature Switzerland AG 2022

[復(fù)制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 11:03:06 | 只看該作者
Form: History of One Term and Five Concepts,ends on the . which does not directly come from the light sources (.), but from reflections on other surfaces at the scene. Computing . and . are important tasks for computing the global illumination of a given scene.
12#
發(fā)表于 2025-3-23 16:57:18 | 只看該作者
978-3-031-79200-7Springer Nature Switzerland AG 2022
13#
發(fā)表于 2025-3-23 19:30:54 | 只看該作者
GPU Ray Tracing in Non-Euclidean Spaces978-3-031-79212-0Series ISSN 2469-4215 Series E-ISSN 2469-4223
14#
發(fā)表于 2025-3-24 01:44:26 | 只看該作者
15#
發(fā)表于 2025-3-24 06:15:58 | 只看該作者
M. Cary D.Litt.,H. H. Scullard F.B.A.This chapter explores the Riemannian ray tracing (introduced in Chapter 5) in non-isotropic geometries to render inside views of the most non-trivial Thurston geometries: Nil, Sol, and .. These Riemannian manifolds are fundamental in the Geometrization conjecture as we saw in Section 2.6.
16#
發(fā)表于 2025-3-24 09:53:02 | 只看該作者
Classical non-Euclidean Spaces,We present some expressive output images from our implementation (given in Chapter 5) of the algorithm in GPU using RTX. This chapter consider examples of 3-manifolds and orbifolds modeled by the classical geometries. For visualizations using classical rasterization techniques, see Weeks [Wee02].
17#
發(fā)表于 2025-3-24 11:11:33 | 只看該作者
18#
發(fā)表于 2025-3-24 18:40:19 | 只看該作者
https://doi.org/10.1057/978-1-137-56595-2sed of ambient three-dimensional space, 3D shapes placed in this ambient space, and a viewpoint, among other parameters. The output is a 2D view. In that sense, the rendering process transforms geometric 3D information into visual 2D information.
19#
發(fā)表于 2025-3-24 19:59:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:46:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 星子县| 灵石县| 昌平区| 龙江县| 翁源县| 桓台县| 丰台区| 麻江县| 潮安县| 广宗县| 杭州市| 弥勒县| 织金县| 东兰县| 都兰县| 原平市| 永嘉县| 阿克陶县| 泽州县| 枣庄市| 望谟县| 寻乌县| 镇康县| 海兴县| 临猗县| 罗定市| 尚志市| 保德县| 静宁县| 浙江省| 金昌市| 云阳县| 黄石市| 弥渡县| 札达县| 新和县| 无为县| 麻阳| 诸城市| 南宫市|