找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: G.W. Leibniz, Interrelations between Mathematics and Philosophy; Norma B. Goethe,Philip Beeley,David Rabouin Book 2015 Springer Netherland

[復(fù)制鏈接]
樓主: 變成小松鼠
11#
發(fā)表于 2025-3-23 12:35:27 | 只看該作者
https://doi.org/10.1007/978-3-642-73440-3ccess of the mathematical sciences in harnessing and explaining the natural world. Part of the motivation for this concern was his recognition that disciplines such as optics, pneumatics, and mechanics contributed substantially to the improvement of the human condition, this being on his view the ul
12#
發(fā)表于 2025-3-23 14:25:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:13 | 只看該作者
Gespr?chstechnik der neuen Generationit their determinate inter-relations so clearly. However, he also believed that the proper use of mathematics requires careful philosophical reflection. Leibniz recognized that while different sciences require different methodologies, no matter what special features different domains exhibit, all sc
14#
發(fā)表于 2025-3-23 23:19:05 | 只看該作者
https://doi.org/10.1007/978-1-4302-6326-5gures. These two notions played an essential role in his mathematics and in his understanding of what he called ?geometricity’. My paper is divided into four sections. The first section investigates the meaning of analysis and ?analyzability?, as well as their relation to ?geometricity’ and shows th
15#
發(fā)表于 2025-3-24 05:12:51 | 只看該作者
Ein subjektives Museum von 1984icipated by other mathematicians such as Pierre de Fermat, James Gregory, Isaac Newton, Fran?ois Regnauld, John Wallis, etc. This paper investigates the cases of Isaac Barrow (Part I) and Pietro Mengoli (Part II) who, earlier than Leibniz, had been familiar with the characteristic triangle, transmut
16#
發(fā)表于 2025-3-24 09:07:52 | 只看該作者
https://doi.org/10.1007/978-3-319-96707-3ubjects with those of Georg Cantor, I outline Leibniz’s doctrine of the fictionality of infinite wholes and numbers by reference to his 1674 quadrature of the hyperbola, and defend its consistency against criticisms. In the third section I show how this same conception of the infinite informs Leibni
17#
發(fā)表于 2025-3-24 14:00:39 | 只看該作者
R. Carlsson,T. Johansson,L. Kahlmannd related points in Leibniz’s philosophy. Galileo’s celebrated denial that ‘greater’, ‘less’, and ‘equal’ apply in the infinite threatens two important mathematical principles: Euclid’s Axiom and the Bijection Principle of Cardinal Equality. I consider two potential strategies open to Galileo for p
18#
發(fā)表于 2025-3-24 18:04:19 | 只看該作者
Biotechnology Intelligence Units doctrine that infinitesimals are “fictions,” albeit fictions so well-founded that their use will never lead to error. I begin with a very brief sketch of the traditional conception of rigorous demonstration and the methodological disputes engendered by the advent of the Leibnizian .. I then examin
19#
發(fā)表于 2025-3-24 20:02:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:45 | 只看該作者
Norma B. Goethe,Philip Beeley,David RabouinFirst dedicated collection of studies on the interrelations between mathematics and philosophy in Leibniz.Making use of the complete resources of the Leibniz‘s published and unpublished writings.Cover
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平南县| 弥勒县| 盖州市| 克拉玛依市| 平泉县| 宁安市| 许昌县| 偏关县| 乌拉特中旗| 章丘市| 巢湖市| 察哈| 平顺县| 贺兰县| 固始县| 盘山县| 台中市| 郁南县| 根河市| 天峨县| 兰西县| 蒲城县| 平定县| 肇州县| 锦屏县| 陈巴尔虎旗| 三明市| 佛坪县| 石屏县| 康马县| 满洲里市| 永靖县| 保定市| 莲花县| 四会市| 鹤庆县| 灵石县| 安远县| 宜昌市| 巫山县| 宣武区|