找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: G-Functions and Geometry; A Publication of the Yves André Book 1989 Springer Fachmedien Wiesbaden 1989 Algebra.Arithmetik.Differentialgleic

[復(fù)制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 22:45:20 | 只看該作者
978-3-528-06317-7Springer Fachmedien Wiesbaden 1989
32#
發(fā)表于 2025-3-27 03:32:40 | 只看該作者
G-Functions and Geometry978-3-663-14108-2Series ISSN 0179-2156
33#
發(fā)表于 2025-3-27 07:31:13 | 只看該作者
0179-2156 Overview: 978-3-528-06317-7978-3-663-14108-2Series ISSN 0179-2156
34#
發(fā)表于 2025-3-27 11:25:36 | 只看該作者
Introductionitute a new topic: they were brought in by C.L.Siegel in 1929, in his famous paper on applications of diophantine approximation. He defined G-functions to be the formal power series y = Σa.x. whose coefficients a lie in some algebraic number field K , which fulfill the following three conditions:
35#
發(fā)表于 2025-3-27 13:36:29 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:45 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:55 | 只看該作者
Independence of Values of G-Functionsniques he found (and described in the same paper) for studying the diophantine approximation properties of values of what he called E-functions. However no proof had appeared, and the first attempt in the direction of Siegel’s statements was in M.S. Numagomedov’s work, more than fourty years later.
39#
發(fā)表于 2025-3-28 08:12:51 | 只看該作者
Towards Grothendieck’s Conjecture on Periods of Algebraic Manifolds? among the periods of an (algebraic) projective manifold X defined over Φ? is determined by the Hodge cycles on the powers of X. (or by the algebraic cycles, in the strongest version). Building upon methods of chapter VII and of variation of Hodge structure, we give a partial answer to this conject
40#
發(fā)表于 2025-3-28 12:38:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 濮阳县| 肇州县| 南岸区| 邵东县| 沙田区| 汕尾市| 清苑县| 四会市| 类乌齐县| 焉耆| 夏河县| 铁岭市| 永安市| 濮阳县| 体育| 且末县| 奇台县| 彭山县| 济阳县| 平谷区| 兴海县| 诸暨市| 博乐市| 平和县| 河源市| 通海县| 临安市| 蒙自县| 贡嘎县| 东港市| 沅江市| 合作市| 五河县| 罗江县| 金沙县| 山阳县| 盖州市| 鄂尔多斯市| 西吉县| 榆社县|