找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: G-Functions and Geometry; A Publication of the Yves André Book 1989 Springer Fachmedien Wiesbaden 1989 Algebra.Arithmetik.Differentialgleic

[復制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 22:45:20 | 只看該作者
978-3-528-06317-7Springer Fachmedien Wiesbaden 1989
32#
發(fā)表于 2025-3-27 03:32:40 | 只看該作者
G-Functions and Geometry978-3-663-14108-2Series ISSN 0179-2156
33#
發(fā)表于 2025-3-27 07:31:13 | 只看該作者
0179-2156 Overview: 978-3-528-06317-7978-3-663-14108-2Series ISSN 0179-2156
34#
發(fā)表于 2025-3-27 11:25:36 | 只看該作者
Introductionitute a new topic: they were brought in by C.L.Siegel in 1929, in his famous paper on applications of diophantine approximation. He defined G-functions to be the formal power series y = Σa.x. whose coefficients a lie in some algebraic number field K , which fulfill the following three conditions:
35#
發(fā)表于 2025-3-27 13:36:29 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:45 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:55 | 只看該作者
Independence of Values of G-Functionsniques he found (and described in the same paper) for studying the diophantine approximation properties of values of what he called E-functions. However no proof had appeared, and the first attempt in the direction of Siegel’s statements was in M.S. Numagomedov’s work, more than fourty years later.
39#
發(fā)表于 2025-3-28 08:12:51 | 只看該作者
Towards Grothendieck’s Conjecture on Periods of Algebraic Manifolds? among the periods of an (algebraic) projective manifold X defined over Φ? is determined by the Hodge cycles on the powers of X. (or by the algebraic cycles, in the strongest version). Building upon methods of chapter VII and of variation of Hodge structure, we give a partial answer to this conject
40#
發(fā)表于 2025-3-28 12:38:48 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铁岭市| 疏附县| 敦煌市| 抚松县| 遂溪县| 翼城县| 台南县| 东光县| 张家口市| 东辽县| 湟中县| 汉寿县| 衢州市| 新绛县| 祁东县| 莱州市| 威宁| 衡南县| 宿州市| 望谟县| 伊金霍洛旗| 九江市| 延边| 临朐县| 明水县| 白水县| 仙游县| 江安县| 霸州市| 乐平市| 共和县| 永平县| 佛学| 潞城市| 镇原县| 安丘市| 文昌市| 梁河县| 衡阳市| 晋城| 华宁县|