找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fuzzy Social Choice Theory; Michael B. Gibilisco,Annie M. Gowen,Terry D. Clark Book 2014 Springer International Publishing Switzerland 201

[復(fù)制鏈接]
查看: 55205|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:03:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fuzzy Social Choice Theory
編輯Michael B. Gibilisco,Annie M. Gowen,Terry D. Clark
視頻videohttp://file.papertrans.cn/352/351377/351377.mp4
概述Presents a comprehensive analysis of fuzzy set theoretic models of social choice.Paves the way for the development of a fuzzy social choice theory.Includes applications of the described theory and enc
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: Fuzzy Social Choice Theory;  Michael B. Gibilisco,Annie M. Gowen,Terry D. Clark Book 2014 Springer International Publishing Switzerland 201
描述.This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem; the Gibbard-Satterthwaite theorem and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a social choice that can be both strategy-proof and non-dictatorial. Moreover, the median voter theorem is shown to hold under strict fuzzy preferences but not under weak fuzzy preferenc
出版日期Book 2014
關(guān)鍵詞Fuzzy maximal set; Fuzzy spatial model; Fuzzy weak preference; Group decision making; Individual prefere
版次1
doihttps://doi.org/10.1007/978-3-319-05176-5
isbn_softcover978-3-319-35671-6
isbn_ebook978-3-319-05176-5Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Fuzzy Social Choice Theory影響因子(影響力)




書目名稱Fuzzy Social Choice Theory影響因子(影響力)學科排名




書目名稱Fuzzy Social Choice Theory網(wǎng)絡(luò)公開度




書目名稱Fuzzy Social Choice Theory網(wǎng)絡(luò)公開度學科排名




書目名稱Fuzzy Social Choice Theory被引頻次




書目名稱Fuzzy Social Choice Theory被引頻次學科排名




書目名稱Fuzzy Social Choice Theory年度引用




書目名稱Fuzzy Social Choice Theory年度引用學科排名




書目名稱Fuzzy Social Choice Theory讀者反饋




書目名稱Fuzzy Social Choice Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:36 | 只看該作者
第151377主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:37:16 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:54:08 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:25:49 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:38:37 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:29:30 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:36:10 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:22:07 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:29:44 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 灵璧县| 玉田县| 赣州市| 汶上县| 兰西县| 合山市| 锡林浩特市| 凤凰县| 泸西县| 青冈县| 特克斯县| 延津县| 内江市| 宣恩县| 如皋市| 观塘区| 南溪县| 社旗县| 平泉县| 疏附县| 嫩江县| 清镇市| 昌乐县| 高雄市| 新巴尔虎左旗| 平阴县| 综艺| 泰兴市| 琼结县| 长白| 英超| 睢宁县| 曲阳县| 霍林郭勒市| 晋宁县| 三穗县| 新田县| 岑巩县| 吴堡县| 南川市|