找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fuzzy Preference Ordering of Interval Numbers in Decision Problems; Atanu Sengupta,Tapan Kumar Pal Book 2009 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
查看: 26344|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:02:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems
編輯Atanu Sengupta,Tapan Kumar Pal
視頻videohttp://file.papertrans.cn/352/351328/351328.mp4
概述Studies real decision situations where problems are defined in inexact environment.Presents recent research in Fuzzy Preference Ordering of Interval Numbers and Modelling of Interval Decision Problems
叢書(shū)名稱Studies in Fuzziness and Soft Computing
圖書(shū)封面Titlebook: Fuzzy Preference Ordering of Interval Numbers in Decision Problems;  Atanu Sengupta,Tapan Kumar Pal Book 2009 Springer-Verlag Berlin Heidel
描述.In conventional mathematical programming, coefficients of problems are usually determined by the experts as crisp values in terms of classical mathematical reasoning. But in reality, in an imprecise and uncertain environment, it will be utmost unrealistic to assume that the knowledge and representation of an expert can come in a precise way. The wider objective of the book is to study different real decision situations where problems are defined in inexact environment. Inexactness are mainly generated in two ways – (1) due to imprecise perception and knowledge of the human expert followed by vague representation of knowledge as a DM; (2) due to huge-ness and complexity of relations and data structure in the definition of the problem situation. We use interval numbers to specify inexact or imprecise or uncertain data. Consequently, the study of a decision problem requires answering the following initial questions: How should we compare and define preference ordering between two intervals?, interpret and deal inequality relations involving interval coefficients?, interpret and make way towards the goal of the decision problem? ..The present research work consists of two closely rela
出版日期Book 2009
關(guān)鍵詞Fuzziness; Fuzzy Preference Ordering of Interval Numbers; Interval Decision Problems; Traveling Salesma
版次1
doihttps://doi.org/10.1007/978-3-540-89915-0
isbn_softcover978-3-642-10060-4
isbn_ebook978-3-540-89915-0Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems影響因子(影響力)




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems被引頻次




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems被引頻次學(xué)科排名




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems年度引用




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems年度引用學(xué)科排名




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems讀者反饋




書(shū)目名稱Fuzzy Preference Ordering of Interval Numbers in Decision Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:16:49 | 只看該作者
第151328主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:38:21 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:46:18 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:39:10 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:13:31 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:15:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:35:28 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:24:16 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:44:13 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新绛县| 巫溪县| 大城县| 图木舒克市| 上犹县| 丹棱县| 桂林市| 全南县| 定西市| 新化县| 山阴县| 北流市| 泾川县| 灌南县| 鄂托克旗| 日照市| 黔西| 太仓市| 新泰市| 柘荣县| 沈丘县| 隆安县| 九龙县| 大邑县| 灵山县| 会理县| 西畴县| 赤水市| 十堰市| 盘锦市| 新巴尔虎右旗| 南平市| 闽清县| 嘉定区| 定襄县| 隆子县| 三明市| 康马县| 托克托县| 盖州市| 通城县|