找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fuzzy Lie Algebras; Muhammad Akram Book 2018 Springer Nature Singapore Pte Ltd. 2018 Fuzzy Lie Structures.Fuzzy Lie Ideals.Fuzzy Lie Subal

[復(fù)制鏈接]
查看: 32675|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:21:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fuzzy Lie Algebras
編輯Muhammad Akram
視頻videohttp://file.papertrans.cn/352/351241/351241.mp4
概述Provides a crisp review of fuzzy set theory, Lie algebras, and Lie superalgebras.Presents the properties of interval-valued fuzzy Lie ideals, Noetherian Lie algebras, quotient Lie algebras, and interv
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Fuzzy Lie Algebras;  Muhammad Akram Book 2018 Springer Nature Singapore Pte Ltd. 2018 Fuzzy Lie Structures.Fuzzy Lie Ideals.Fuzzy Lie Subal
描述This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists..Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable b
出版日期Book 2018
關(guān)鍵詞Fuzzy Lie Structures; Fuzzy Lie Ideals; Fuzzy Lie Subalgebras; Fuzzy Bracket Product; Rough Fuzzy Lie Id
版次1
doihttps://doi.org/10.1007/978-981-13-3221-0
isbn_ebook978-981-13-3221-0Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Fuzzy Lie Algebras影響因子(影響力)




書目名稱Fuzzy Lie Algebras影響因子(影響力)學(xué)科排名




書目名稱Fuzzy Lie Algebras網(wǎng)絡(luò)公開度




書目名稱Fuzzy Lie Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fuzzy Lie Algebras被引頻次




書目名稱Fuzzy Lie Algebras被引頻次學(xué)科排名




書目名稱Fuzzy Lie Algebras年度引用




書目名稱Fuzzy Lie Algebras年度引用學(xué)科排名




書目名稱Fuzzy Lie Algebras讀者反饋




書目名稱Fuzzy Lie Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:40 | 只看該作者
第151241主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:21:55 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:32:38 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:52:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:03:05 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:22:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:39:13 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:24:07 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万盛区| 乌拉特中旗| 达州市| 卢龙县| 武山县| 万宁市| 佳木斯市| 精河县| 随州市| 焦作市| 四川省| 晋宁县| 黔西县| 中山市| 昌图县| 泰来县| 张北县| 尼玛县| 眉山市| 东平县| 宜兰市| 宝鸡市| 望谟县| 无极县| 冕宁县| 马鞍山市| 东乡| 中西区| 赤峰市| 北碚区| 白银市| 台东县| 于都县| 泸溪县| 威信县| 特克斯县| 肃宁县| 胶南市| 和平县| 西安市| 阆中市|