找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fundamentals of Diophantine Geometry; Serge Lang Textbook 1983 Springer Science+Business Media New York 1983 Abelian varieties.Diophantisc

[復(fù)制鏈接]
查看: 53025|回復(fù): 52
樓主
發(fā)表于 2025-3-21 20:02:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fundamentals of Diophantine Geometry
編輯Serge Lang
視頻videohttp://file.papertrans.cn/351/350260/350260.mp4
圖書封面Titlebook: Fundamentals of Diophantine Geometry;  Serge Lang Textbook 1983 Springer Science+Business Media New York 1983 Abelian varieties.Diophantisc
描述Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mor
出版日期Textbook 1983
關(guān)鍵詞Abelian varieties; Diophantische Geometrie; Geometry; algebra; algebraic geometry; diophantine equation; f
版次1
doihttps://doi.org/10.1007/978-1-4757-1810-2
isbn_softcover978-1-4419-2818-4
isbn_ebook978-1-4757-1810-2
copyrightSpringer Science+Business Media New York 1983
The information of publication is updating

書目名稱Fundamentals of Diophantine Geometry影響因子(影響力)




書目名稱Fundamentals of Diophantine Geometry影響因子(影響力)學(xué)科排名




書目名稱Fundamentals of Diophantine Geometry網(wǎng)絡(luò)公開度




書目名稱Fundamentals of Diophantine Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fundamentals of Diophantine Geometry被引頻次




書目名稱Fundamentals of Diophantine Geometry被引頻次學(xué)科排名




書目名稱Fundamentals of Diophantine Geometry年度引用




書目名稱Fundamentals of Diophantine Geometry年度引用學(xué)科排名




書目名稱Fundamentals of Diophantine Geometry讀者反饋




書目名稱Fundamentals of Diophantine Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:14 | 只看該作者
第150260主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:19:10 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:13:45 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:29:23 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:33:33 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:47:13 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:57:20 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:26:21 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:47:13 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安新县| 万载县| 英德市| 饶阳县| 彭山县| 怀仁县| 靖州| 渝中区| 彩票| 江华| 商城县| 巩义市| 拜泉县| 平泉县| 昭通市| 丁青县| 泌阳县| 宿迁市| 赤峰市| 城步| 德州市| 家居| 曲靖市| 咸丰县| 阿合奇县| 安吉县| 双柏县| 托里县| 十堰市| 佛学| 灯塔市| 宜君县| 三原县| 孟连| 廊坊市| 黄浦区| 宜阳县| 蕲春县| 防城港市| 商洛市| 陆良县|