找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fundamental Mathematical Concepts for Machine Learning in Science; Umberto Michelucci Textbook 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 32863|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:07:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science
編輯Umberto Michelucci
視頻videohttp://file.papertrans.cn/351/350003/350003.mp4
概述Clearly explains the mathematical underpinnings essential for a robust understanding of machine learning algorithms.Coverage is tailored to students and researchers in all natural science areas, in ad
圖書(shū)封面Titlebook: Fundamental Mathematical Concepts for Machine Learning in Science;  Umberto Michelucci Textbook 2024 The Editor(s) (if applicable) and The
描述.This book is for individuals with a scientific background who aspire to apply machine learning within various natural science disciplines—such as physics, chemistry, biology, medicine, psychology and many more. It elucidates core mathematical concepts in an accessible and straightforward manner, maintaining rigorous mathematical integrity. For readers more versed in mathematics, the book includes advanced sections that are not prerequisites for the initial reading. It ensures concepts are clearly defined and theorems are proven where it‘s pertinent. Machine learning transcends the mere implementation and training of algorithms; it encompasses the broader challenges of constructing robust datasets, model validation, addressing imbalanced datasets, and fine-tuning hyperparameters. These topics are thoroughly examined within the text, along with the theoretical foundations underlying these methods. Rather than concentrating on particular algorithms this book focuses on the comprehensive concepts and theories essential for their application. It stands as an indispensable resource for any scientist keen on integrating machine learning effectively into their research...Numerous texts de
出版日期Textbook 2024
關(guān)鍵詞Machine Learning; Mathematics; Model Validation; Sampling Theory; Hyper-parameter Tuning; Linear Algebra
版次1
doihttps://doi.org/10.1007/978-3-031-56431-4
isbn_softcover978-3-031-56433-8
isbn_ebook978-3-031-56431-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science影響因子(影響力)




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science被引頻次




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science被引頻次學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science年度引用




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science年度引用學(xué)科排名




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science讀者反饋




書(shū)目名稱Fundamental Mathematical Concepts for Machine Learning in Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:21 | 只看該作者
第150003主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:48:13 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:47:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:35:35 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:03:59 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:25:05 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:56:34 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:38 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:49:21 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣威市| 全椒县| 陆丰市| 安阳市| 阿鲁科尔沁旗| 甘孜| 东光县| 山东| 荔波县| 荣成市| 黑水县| 赤壁市| 阿尔山市| 玉田县| 阿瓦提县| 澄迈县| 洪洞县| 万州区| 漾濞| 嘉鱼县| 营山县| 凌源市| 花垣县| 渭南市| 津南区| 寻乌县| 南华县| 沁水县| 阳西县| 大新县| 民和| 襄城县| 景洪市| 新津县| 库尔勒市| 井陉县| 怀安县| 缙云县| 广水市| 海城市| 长岛县|