找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Functorial Semiotics for Creativity in Music and Mathematics; Guerino Mazzola,Sangeeta Dey,Yan Pang Book 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 49078|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:42:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Functorial Semiotics for Creativity in Music and Mathematics
編輯Guerino Mazzola,Sangeeta Dey,Yan Pang
視頻videohttp://file.papertrans.cn/350/349916/349916.mp4
概述The first functorial semiotic theory for creativity in music and mathematics.Application of topos theory to the classification of creativity.Proposes object-oriented schemes for software implementatio
叢書名稱Computational Music Science
圖書封面Titlebook: Functorial Semiotics for Creativity in Music and Mathematics;  Guerino Mazzola,Sangeeta Dey,Yan Pang Book 2022 The Editor(s) (if applicable
描述.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing semiotic units - enabling a ?ech cohomology of manifolds of semiotic entities. It opens up a conceptual mathematics as initiated by Grothendieck and Galois and allows a precise description of musical and mathematical creativity, including a classification thereof in three types. This approach is new, as it connects topos theory, semiotics, creativity theory, and AI objectives for a missing link to HI (Human Intelligence).. .The reader can apply creativity research using our classification, cohomology theory, generalized Yoneda embedding, and Java implementation of the presented functorial display of semiotics, especially generalizing the Hjelmslev architecture. The intended audience are academic, industrial, and artistic researchers in crea
出版日期Book 2022
關(guān)鍵詞semiotics; creativity; music; mathematics; cohomology; categories; functors; Yoneda Lemma; topos; Grothendiec
版次1
doihttps://doi.org/10.1007/978-3-030-85190-3
isbn_softcover978-3-030-85192-7
isbn_ebook978-3-030-85190-3Series ISSN 1868-0305 Series E-ISSN 1868-0313
issn_series 1868-0305
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Functorial Semiotics for Creativity in Music and Mathematics影響因子(影響力)




書目名稱Functorial Semiotics for Creativity in Music and Mathematics影響因子(影響力)學(xué)科排名




書目名稱Functorial Semiotics for Creativity in Music and Mathematics網(wǎng)絡(luò)公開度




書目名稱Functorial Semiotics for Creativity in Music and Mathematics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Functorial Semiotics for Creativity in Music and Mathematics被引頻次




書目名稱Functorial Semiotics for Creativity in Music and Mathematics被引頻次學(xué)科排名




書目名稱Functorial Semiotics for Creativity in Music and Mathematics年度引用




書目名稱Functorial Semiotics for Creativity in Music and Mathematics年度引用學(xué)科排名




書目名稱Functorial Semiotics for Creativity in Music and Mathematics讀者反饋




書目名稱Functorial Semiotics for Creativity in Music and Mathematics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:33 | 只看該作者
第149916主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:48 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:03:24 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:24:21 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:21:02 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:22:32 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:20:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:22:52 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:43:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庐江县| 武汉市| 棋牌| 化隆| 山东省| 西安市| 揭东县| 五峰| 开鲁县| 太湖县| 邓州市| 江陵县| 临夏县| 高碑店市| 建平县| 宜春市| 利津县| 永泰县| 仙游县| 铁岭市| 拜城县| 宁蒗| 宜川县| 长泰县| 车险| 蒙山县| 富平县| 潜山县| 酒泉市| 光泽县| 自治县| 徐汇区| 华坪县| 崇义县| 洛浦县| 历史| 黄山市| 永嘉县| 荥阳市| 仪陇县| 岐山县|