找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Functional Spaces for the Theory of Elliptic Partial Differential Equations; Fran?oise Demengel,Gilbert Demengel Textbook 2012 Springer-Ve

[復制鏈接]
查看: 21582|回復: 41
樓主
發(fā)表于 2025-3-21 19:17:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations
編輯Fran?oise Demengel,Gilbert Demengel
視頻videohttp://file.papertrans.cn/350/349813/349813.mp4
概述Complements Adams’ Sobolev Spaces in comprising a complete presentation of functional spaces but combined with abstract convex analysis.Gathers together results from functional analysis that make it e
叢書名稱Universitext
圖書封面Titlebook: Functional Spaces for the Theory of Elliptic Partial Differential Equations;  Fran?oise Demengel,Gilbert Demengel Textbook 2012 Springer-Ve
描述.The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions..This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem..The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. .There are complete and de
出版日期Textbook 2012
關鍵詞Sobolev spaces; distributions; elliptic partial differential equations; function spaces; partial differe
版次1
doihttps://doi.org/10.1007/978-1-4471-2807-6
isbn_softcover978-1-4471-2806-9
isbn_ebook978-1-4471-2807-6Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag London Limited 2012
The information of publication is updating

書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations影響因子(影響力)




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations影響因子(影響力)學科排名




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations網絡公開度




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations網絡公開度學科排名




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations被引頻次




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations被引頻次學科排名




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations年度引用




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations年度引用學科排名




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations讀者反饋




書目名稱Functional Spaces for the Theory of Elliptic Partial Differential Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:47:17 | 只看該作者
第149813主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:38:36 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:33:22 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:02:45 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:12:51 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:24:01 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:17:16 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:42:10 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:57:29 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 18:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巢湖市| 阳原县| 衡阳市| 贵定县| 伊金霍洛旗| 达孜县| 定结县| 太湖县| 奉化市| 金堂县| 法库县| 昂仁县| 富源县| 清苑县| 富平县| 尖扎县| 虎林市| 宁河县| 天峻县| 镇巴县| 洪雅县| 长垣县| 莆田市| 武强县| 彭水| 子洲县| 都昌县| 区。| 木兰县| 墨竹工卡县| 乐清市| 峨眉山市| 晋江市| 东明县| 泸西县| 五原县| 玉山县| 崇阳县| 习水县| 蒙自县| 南岸区|