找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Functional Analysis, Sobolev Spaces, and Calculus of Variations; Pablo Pedregal Textbook 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
查看: 47334|回復: 43
樓主
發(fā)表于 2025-3-21 17:08:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations
編輯Pablo Pedregal
視頻videohttp://file.papertrans.cn/350/349615/349615.mp4
概述Covers, in a single source, the full road to treat standard variational problems in solid analytical foundation.The style facilitates progressive understanding, while the set of solved exercises helps
叢書名稱UNITEXT
圖書封面Titlebook: Functional Analysis, Sobolev Spaces, and Calculus of Variations;  Pablo Pedregal Textbook 2024 The Editor(s) (if applicable) and The Author
描述This book aims at introducing students into the modern analytical foundations to treat problems and situations in the Calculus of Variations solidly and rigorously. Since no background is taken for granted or assumed, as the textbook pretends to be self-contained, areas like basic Functional Analysis and Sobolev spaces are studied to the point that chapters devoted to these topics can be utilized by themselves as an introduction to these important parts of Analysis. The material in this regard has been selected to serve the needs of classical variational problems, leaving broader treatments for more advanced and specialized courses in those areas. It should not be forgotten that problems in the Calculus of Variations historically played a crucial role in pushing Functional Analysis as a discipline on its own right. The style is intentionally didactic. After a first general chapter to place optimization problems in infinite-dimensional spaces in perspective, the first part of the book focuses on the initial important concepts in Functional Analysis and introduces Sobolev spaces in dimension one as a preliminary, simpler case (much in the same way as in the successful book of H. Brez
出版日期Textbook 2024
關鍵詞Banach space; Hilbert space; Lebesgue space; Sobolev space; weak topology; convex analysis; weak lower sem
版次1
doihttps://doi.org/10.1007/978-3-031-49246-4
isbn_softcover978-3-031-49245-7
isbn_ebook978-3-031-49246-4Series ISSN 2038-5714 Series E-ISSN 2532-3318
issn_series 2038-5714
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations影響因子(影響力)




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations影響因子(影響力)學科排名




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations網絡公開度




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations網絡公開度學科排名




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations被引頻次




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations被引頻次學科排名




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations年度引用




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations年度引用學科排名




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations讀者反饋




書目名稱Functional Analysis, Sobolev Spaces, and Calculus of Variations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:52:13 | 只看該作者
第149615主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:42:23 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:25:43 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:00:29 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:33:29 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:19:04 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:35:06 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:32:22 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:09:26 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 01:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜川市| 婺源县| 平凉市| 侯马市| 高邑县| 塔城市| 六枝特区| 新密市| 汨罗市| 马公市| 土默特左旗| 乌鲁木齐县| 滕州市| 东兰县| 平南县| 东至县| 泰兴市| 台北市| 天峨县| 论坛| 苍梧县| 尚义县| 喜德县| 利津县| 禄丰县| 长治市| 泸溪县| 维西| 章丘市| 平果县| 万山特区| 商都县| 习水县| 疏附县| 肥西县| 鄱阳县| 阳信县| 安阳市| 钟山县| 垫江县| 堆龙德庆县|