找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Frontiers in Functional Equations and Analytic Inequalities; George A. Anastassiou,John Michael Rassias Book 2019 Springer Nature Switzerl

[復(fù)制鏈接]
查看: 11074|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:23:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Frontiers in Functional Equations and Analytic Inequalities
編輯George A. Anastassiou,John Michael Rassias
視頻videohttp://file.papertrans.cn/350/349161/349161.mp4
概述Features self-contained chapters that can be read independently.Presents cutting-edge research from the frontiers of functional equations and analytic inequalities active fields.Contains an extensive
圖書封面Titlebook: Frontiers in Functional Equations and Analytic Inequalities;  George A. Anastassiou,John Michael Rassias Book 2019 Springer Nature Switzerl
描述This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics:?.Hyperstability of a linear functional equation on restricted domains.Hyers–Ulam’s stability results to a?three point boundary value problem of nonlinear fractional order differential equations.Topological?degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential?equations.General Solution and Hyers-Ulam Stability of Duo Trigintic?Functional Equation in Multi-Banach Spaces.Stabilities of Functional Equations via Fixed Point?Technique.Measure zero stability?problem for the Drygas functional equation with complex involution.Fourier Transforms and Ulam?Stabilities of Linear Differential Equations.Hyers–Ulam stability of a discrete diamond–alpha derivative equation.Approximate?solutions of an interesting new mixed type additive-quadratic-quartic functional equation.?.The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Pol
出版日期Book 2019
關(guān)鍵詞Functional Inequalities; Functional Equations; Polya Inequalities; Operator Inequalities; Opial Inequali
版次1
doihttps://doi.org/10.1007/978-3-030-28950-8
isbn_softcover978-3-030-28952-2
isbn_ebook978-3-030-28950-8
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Frontiers in Functional Equations and Analytic Inequalities影響因子(影響力)




書目名稱Frontiers in Functional Equations and Analytic Inequalities影響因子(影響力)學(xué)科排名




書目名稱Frontiers in Functional Equations and Analytic Inequalities網(wǎng)絡(luò)公開度




書目名稱Frontiers in Functional Equations and Analytic Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Frontiers in Functional Equations and Analytic Inequalities被引頻次




書目名稱Frontiers in Functional Equations and Analytic Inequalities被引頻次學(xué)科排名




書目名稱Frontiers in Functional Equations and Analytic Inequalities年度引用




書目名稱Frontiers in Functional Equations and Analytic Inequalities年度引用學(xué)科排名




書目名稱Frontiers in Functional Equations and Analytic Inequalities讀者反饋




書目名稱Frontiers in Functional Equations and Analytic Inequalities讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:31 | 只看該作者
第149161主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:18:57 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:19:33 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:36:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:12:54 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:15:40 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:56:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:44:29 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:31:56 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 务川| 灌阳县| 龙州县| 宜兰县| 岳西县| 隆昌县| 普定县| 那曲县| 重庆市| 兖州市| 平湖市| 易门县| 丰顺县| 全椒县| 马尔康县| 张家界市| 鹤山市| 黄大仙区| 乐山市| 历史| 荣昌县| 板桥市| 永和县| 蕲春县| 安岳县| 霞浦县| 兴义市| 美姑县| 盐源县| 沙坪坝区| 大关县| 汉源县| 凭祥市| 蓬安县| 尉氏县| 厦门市| 鹤岗市| 龙口市| 颍上县| 盐山县|