找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: From Rings and Modules to Hopf Algebras; One Flew Over the Al Michel Broué Textbook 2024 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
查看: 36700|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:27:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱From Rings and Modules to Hopf Algebras
副標題One Flew Over the Al
編輯Michel Broué
視頻videohttp://file.papertrans.cn/349/348914/348914.mp4
概述A highly original introduction to basic tools of algebra, from a categorical point of view.Includes advanced material on representation theory such as the Drinfeld–Lusztig double.Unusually rich in exa
圖書封面Titlebook: From Rings and Modules to Hopf Algebras; One Flew Over the Al Michel Broué Textbook 2024 The Editor(s) (if applicable) and The Author(s), u
描述This textbook provides an introduction to fundamental concepts of algebra at upper undergraduate to graduate level, covering the theory of rings, fields and modules, as well as the representation theory of finite groups..Throughout the book, the exposition relies on universal constructions, making systematic use of quotients and category theory — whose language is introduced in the first chapter. The book is divided into four parts. Parts I and II cover foundations of rings and modules, field theory and generalities on finite group representations, insisting on rings of polynomials and their ideals. Part III culminates in the structure theory of finitely generated modules over Dedekind domains and its applications to abelian groups, linear maps, and foundations of algebraic number theory. Part IV is an extensive study of linear representations of finite groups over fields of characteristic zero, including graded representations and graded characters as well as a final chapter on the Drinfeld–Lusztig double of a group algebra, appearing for the first time in a textbook at this level..Based on over twenty years of teaching various aspects of algebra, mainly at the école Normale Supér
出版日期Textbook 2024
關(guān)鍵詞Polynomial rings; Ideals; Principal ideal domain; Dedekind ring; Modules; Discriminant; Resultant; Represen
版次1
doihttps://doi.org/10.1007/978-3-031-50062-6
isbn_ebook978-3-031-50062-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱From Rings and Modules to Hopf Algebras影響因子(影響力)




書目名稱From Rings and Modules to Hopf Algebras影響因子(影響力)學科排名




書目名稱From Rings and Modules to Hopf Algebras網(wǎng)絡(luò)公開度




書目名稱From Rings and Modules to Hopf Algebras網(wǎng)絡(luò)公開度學科排名




書目名稱From Rings and Modules to Hopf Algebras被引頻次




書目名稱From Rings and Modules to Hopf Algebras被引頻次學科排名




書目名稱From Rings and Modules to Hopf Algebras年度引用




書目名稱From Rings and Modules to Hopf Algebras年度引用學科排名




書目名稱From Rings and Modules to Hopf Algebras讀者反饋




書目名稱From Rings and Modules to Hopf Algebras讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:49 | 只看該作者
第148914主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:20:11 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:55:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:36:18 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:54:00 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:37:32 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:27:22 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:22:26 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:21:20 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇义县| 天津市| 鄂托克旗| 松潘县| 南部县| 修武县| 汾西县| 昌乐县| 醴陵市| 梓潼县| 会宁县| 镇平县| 洪江市| 靖安县| 那坡县| 蕉岭县| 清丰县| 安达市| 双城市| 大城县| 台湾省| 彭阳县| 兴业县| 六安市| 财经| 临漳县| 北海市| 绥化市| 安吉县| 浙江省| 彰武县| 黔东| 务川| 三穗县| 抚顺县| 西畴县| 时尚| 任丘市| 金坛市| 隆尧县| 墨竹工卡县|