找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: From Holomorphic Functions to Complex Manifolds; Klaus Fritzsche,Hans Grauert Textbook 2002 Springer Science+Business Media New York 2002

[復(fù)制鏈接]
查看: 38214|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:57:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱From Holomorphic Functions to Complex Manifolds
編輯Klaus Fritzsche,Hans Grauert
視頻videohttp://file.papertrans.cn/349/348721/348721.mp4
概述Includes supplementary material:
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: From Holomorphic Functions to Complex Manifolds;  Klaus Fritzsche,Hans Grauert Textbook 2002 Springer Science+Business Media New York 2002
描述The aim of this book is to give an understandable introduction to the the- ory of complex manifolds. With very few exceptions we give complete proofs. Many examples and figures along with quite a few exercises are included. Our intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involved with sheaves, coherence, and higher-dimensional cohomology are avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional co- cycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. The first chapter deals with holomorphic functions defined in open sub- sets of the space en. Many of the well-known properties of holomorphic functions of one variable, such as the Cauchy integral formula or the maxi- mum principle, can be applied directly to obtain corresponding properties of holomorphic functions of several variables. Furthermore, certain prope
出版日期Textbook 2002
關(guān)鍵詞Algebra; Cohomology; Complex Function Theory; Complex Manifolds; Complex analysis; Holomorphic Functions;
版次1
doihttps://doi.org/10.1007/978-1-4684-9273-6
isbn_ebook978-1-4684-9273-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱From Holomorphic Functions to Complex Manifolds影響因子(影響力)




書目名稱From Holomorphic Functions to Complex Manifolds影響因子(影響力)學(xué)科排名




書目名稱From Holomorphic Functions to Complex Manifolds網(wǎng)絡(luò)公開度




書目名稱From Holomorphic Functions to Complex Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱From Holomorphic Functions to Complex Manifolds被引頻次




書目名稱From Holomorphic Functions to Complex Manifolds被引頻次學(xué)科排名




書目名稱From Holomorphic Functions to Complex Manifolds年度引用




書目名稱From Holomorphic Functions to Complex Manifolds年度引用學(xué)科排名




書目名稱From Holomorphic Functions to Complex Manifolds讀者反饋




書目名稱From Holomorphic Functions to Complex Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:39 | 只看該作者
第148721主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:35:11 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:13:11 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:46:11 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 12:55:15 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:14:58 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:19:50 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:18:17 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:18:01 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普定县| 昌邑市| 平泉县| 崇信县| 庆城县| 启东市| 普兰店市| 淳化县| 定西市| 正定县| 清原| 巴青县| 高陵县| 吴川市| 江永县| 将乐县| 清苑县| 资阳市| 临沭县| 兰州市| 安达市| 呼伦贝尔市| 威远县| 六安市| 聂荣县| 高邑县| 浙江省| 尚义县| 日照市| 大新县| 搜索| 项城市| 井陉县| 灌南县| 全椒县| 日喀则市| 安庆市| 南溪县| 蕲春县| 大方县| 白朗县|