找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Frobenius Categories versus Brauer Blocks; The Grothendieck Gro Lluís Puig Book 2009 Birkh?user Basel 2009 Brauer blocks.DEX.Finite.Frobeni

[復(fù)制鏈接]
查看: 50348|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:59:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Frobenius Categories versus Brauer Blocks
副標題The Grothendieck Gro
編輯Lluís Puig
視頻videohttp://file.papertrans.cn/349/348469/348469.mp4
概述First book introducing the abstract setting of the Frobenius categories for the understanding of blocks of the finite groups.First text giving a reduction theorem allowing a proof of the Alperin’s Wei
叢書名稱Progress in Mathematics
圖書封面Titlebook: Frobenius Categories versus Brauer Blocks; The Grothendieck Gro Lluís Puig Book 2009 Birkh?user Basel 2009 Brauer blocks.DEX.Finite.Frobeni
描述.This book contributes to important questions in the representation theory of finite groups over fields of positive characteristic — an area of research initiated by Richard Brauer sixty years ago with the introduction of the blocks of characters. On the one hand, it introduces and develops the abstract setting of the Frobenius categories — also called the Saturated fusion systems in the literature — created by the author fifteen years ago for a better understanding of what was loosely called the local theory of a finite group around a prime number p or, later, around a Brauer block, and for the purpose of an eventual classification — a reasonable concept of simple Frobenius category arises...On the other hand, the book develops this abstract setting in parallel with its application to the Brauer blocks, giving the detailed translation of any abstract concept in the particular context of the blocks. One of the new features in this direction is a framework for a deeper understanding of one of the central open problems in modular representation theory, known as Alperin’s Weight Conjecture (AWC). Actually, this new framework suggests a more general form of AWC, and a significant resul
出版日期Book 2009
關(guān)鍵詞Brauer blocks; DEX; Finite; Frobenius categories; Fusion; algebra; boundary element method; classification;
版次1
doihttps://doi.org/10.1007/978-3-7643-9998-6
isbn_ebook978-3-7643-9998-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Frobenius Categories versus Brauer Blocks影響因子(影響力)




書目名稱Frobenius Categories versus Brauer Blocks影響因子(影響力)學(xué)科排名




書目名稱Frobenius Categories versus Brauer Blocks網(wǎng)絡(luò)公開度




書目名稱Frobenius Categories versus Brauer Blocks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Frobenius Categories versus Brauer Blocks被引頻次




書目名稱Frobenius Categories versus Brauer Blocks被引頻次學(xué)科排名




書目名稱Frobenius Categories versus Brauer Blocks年度引用




書目名稱Frobenius Categories versus Brauer Blocks年度引用學(xué)科排名




書目名稱Frobenius Categories versus Brauer Blocks讀者反饋




書目名稱Frobenius Categories versus Brauer Blocks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:34:06 | 只看該作者
第148469主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:14:31 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:04:13 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:11:33 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:24:53 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:05:03 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:40:04 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:32:30 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:54:26 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 汽车| 囊谦县| 南召县| 颍上县| 宜宾市| 竹北市| 西充县| 郑州市| 新竹县| 台江县| 东乡族自治县| 外汇| 柳河县| 卫辉市| 阳泉市| 德州市| 黔江区| 安西县| 百色市| 祁阳县| 沂源县| 海门市| 博乐市| 望城县| 梅河口市| 承德市| 汽车| 吉林省| 石嘴山市| 会昌县| 昆山市| 咸宁市| 彰化市| 蕲春县| 潞西市| 潜山县| 信阳市| 老河口市| 鱼台县| 茶陵县|