找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractals and Spectra; Related to Fourier A Hans Triebel Book 1997 Birkh?user Verlag 1997 Eigenvalue.Fourier analysis.distribution.entropy n

[復(fù)制鏈接]
查看: 6664|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:02:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Fractals and Spectra
副標(biāo)題Related to Fourier A
編輯Hans Triebel
視頻videohttp://file.papertrans.cn/348/347354/347354.mp4
概述Clear and concise introduction by a leading expert.Self-contained and excellently written monograph.Up-to-date account of fractal geometry and function spaces.Most of the material was published here f
叢書(shū)名稱Modern Birkh?user Classics
圖書(shū)封面Titlebook: Fractals and Spectra; Related to Fourier A Hans Triebel Book 1997 Birkh?user Verlag 1997 Eigenvalue.Fourier analysis.distribution.entropy n
描述n This book deals with several aspects of fractal geometry in ? which are closely connected with Fourier analysis, function spaces, and appropriate (pseudo)differ- tial operators. It emerged quite recently that some modern techniques in the theory of function spaces are intimately related to methods in fractal geometry. Special attention is paid to spectral properties of fractal (pseudo)differential operators; in particular we shall play the drum with a fractal layer. In some sense this book may be considered as the fractal twin of [ET96], where we developed adequate methods to handle spectral problems of degenerate n pseudodifferential operators in ? and in bounded domains. Besides a few special properties of function spaces we relied there on sharp estimates of entropy numbers of compact embeddings between these spaces and their relations to the distribution of eigenvalues. Some of the main assertions of the present book are based on just these techniques but now in a fractal setting. Since virtually nothing of these new methods is available in literature, a substantial part of what we have to say deals with recent developments in the theory of function spaces, also for their own
出版日期Book 1997
關(guān)鍵詞Eigenvalue; Fourier analysis; distribution; entropy numbers; fractal geometry; function spaces; functional
版次1
doihttps://doi.org/10.1007/978-3-0348-0034-1
isbn_softcover978-3-0348-0033-4
isbn_ebook978-3-0348-0034-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightBirkh?user Verlag 1997
The information of publication is updating

書(shū)目名稱Fractals and Spectra影響因子(影響力)




書(shū)目名稱Fractals and Spectra影響因子(影響力)學(xué)科排名




書(shū)目名稱Fractals and Spectra網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Fractals and Spectra網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Fractals and Spectra被引頻次




書(shū)目名稱Fractals and Spectra被引頻次學(xué)科排名




書(shū)目名稱Fractals and Spectra年度引用




書(shū)目名稱Fractals and Spectra年度引用學(xué)科排名




書(shū)目名稱Fractals and Spectra讀者反饋




書(shū)目名稱Fractals and Spectra讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:18 | 只看該作者
第147354主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:21:25 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:47:56 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:32:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:20:37 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:58:10 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:39:29 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:17:34 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:30:23 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金阳县| 策勒县| 阜康市| 建瓯市| 宝兴县| 沙洋县| 南溪县| 伽师县| 当雄县| 乐昌市| 普兰店市| 阜阳市| 治多县| 商河县| 定边县| 绥芬河市| 淮南市| 平南县| 阿坝| 安溪县| 洛南县| 额尔古纳市| 松溪县| 淮南市| 石棉县| 会东县| 荥经县| 临桂县| 合阳县| 金平| 道真| 永德县| 海淀区| 视频| 凉城县| 桐庐县| 桦川县| 屏南县| 崇左市| 莱西市| 介休市|