找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractal Geometry, Complex Dimensions and Zeta Functions; Geometry and Spectra Michel L. Lapidus,Machiel Frankenhuijsen Book 20061st edition

[復(fù)制鏈接]
查看: 9452|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:43:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions
副標(biāo)題Geometry and Spectra
編輯Michel L. Lapidus,Machiel Frankenhuijsen
視頻videohttp://file.papertrans.cn/348/347328/347328.mp4
概述The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings.Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth st
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Fractal Geometry, Complex Dimensions and Zeta Functions; Geometry and Spectra Michel L. Lapidus,Machiel Frankenhuijsen Book 20061st edition
描述.Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary...Key Features: ..- The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings..- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra..- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal..- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula..- The method of diophantine approximation is used to study self-similar strings and flows..- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions..Throughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts...Th
出版日期Book 20061st edition
關(guān)鍵詞Diophantine approximation; Number theory; Prime; Riemann hypothesis; cantor strings; complex dimensions; i
版次1
doihttps://doi.org/10.1007/978-0-387-35208-4
isbn_ebook978-0-387-35208-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag New York 2006
The information of publication is updating

書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions影響因子(影響力)




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions影響因子(影響力)學(xué)科排名




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions網(wǎng)絡(luò)公開度




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions被引頻次




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions被引頻次學(xué)科排名




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions年度引用




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions年度引用學(xué)科排名




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions讀者反饋




書目名稱Fractal Geometry, Complex Dimensions and Zeta Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:44:47 | 只看該作者
第147328主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:31:38 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:19:11 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:50:20 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:00:19 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:54:35 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:24:56 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:48:40 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:26:33 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
SHOW| 大冶市| 屏南县| 泾川县| 芒康县| 安岳县| 鄂伦春自治旗| 永和县| 安化县| 开封县| 铅山县| 忻州市| 简阳市| 凭祥市| 临洮县| 四会市| 大化| 康定县| 蒲江县| 桦甸市| 砚山县| 中山市| 安阳县| 黄龙县| 芦山县| 云梦县| 平利县| 胶南市| 湄潭县| 阳东县| 崇阳县| 平阴县| 突泉县| 固镇县| 凭祥市| 北宁市| 永年县| 屯留县| 内江市| 泰兴市| 秦皇岛市|