找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractal Functions, Dimensions and Signal Analysis; Santo Banerjee,D. Easwaramoorthy,A. Gowrisankar Book 2021 The Editor(s) (if applicable)

[復制鏈接]
查看: 11612|回復: 39
樓主
發(fā)表于 2025-3-21 17:34:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fractal Functions, Dimensions and Signal Analysis
編輯Santo Banerjee,D. Easwaramoorthy,A. Gowrisankar
視頻videohttp://file.papertrans.cn/348/347317/347317.mp4
概述Focuses on the fundamentals of fractional calculus of fractal functions in various settings, and its applications in signal analysis.Covers thoroughly the generalized fractal dimensions and the discre
叢書名稱Understanding Complex Systems
圖書封面Titlebook: Fractal Functions, Dimensions and Signal Analysis;  Santo Banerjee,D. Easwaramoorthy,A. Gowrisankar Book 2021 The Editor(s) (if applicable)
描述This book introduces the fractal interpolation functions (FIFs) in approximation theory to the readers and the concerned researchers in advanced level.? FIFs can be used to precisely reconstruct the naturally occurring functions when compared with the classical interpolants.??.The book focuses on the construction of fractals in metric space through various iterated function systems.? It begins by providing the Mathematical background behind the fractal interpolation functions with its graphical representations and then introduces the fractional integral and fractional derivative on fractal functions in various scenarios.? Further, the existence of the fractal interpolation function with the countable iterated function system is demonstrated by taking suitable monotone and bounded sequences.? It also covers the dimension of fractal functions and investigates the relationship between the fractal dimension and the fractional order of fractal interpolation functions. Moreover, this book explores the idea of fractal interpolation in the reconstruction scheme of illustrative waveforms and discusses the problems of identification of the characterizing parameters.?.In the application secti
出版日期Book 2021
關鍵詞Euclidean Geometry; Fractal Interpolation Function; Approximation Theory; Fractals in Metric Space; Wave
版次1
doihttps://doi.org/10.1007/978-3-030-62672-3
isbn_softcover978-3-030-62674-7
isbn_ebook978-3-030-62672-3Series ISSN 1860-0832 Series E-ISSN 1860-0840
issn_series 1860-0832
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Fractal Functions, Dimensions and Signal Analysis影響因子(影響力)




書目名稱Fractal Functions, Dimensions and Signal Analysis影響因子(影響力)學科排名




書目名稱Fractal Functions, Dimensions and Signal Analysis網(wǎng)絡公開度




書目名稱Fractal Functions, Dimensions and Signal Analysis網(wǎng)絡公開度學科排名




書目名稱Fractal Functions, Dimensions and Signal Analysis被引頻次




書目名稱Fractal Functions, Dimensions and Signal Analysis被引頻次學科排名




書目名稱Fractal Functions, Dimensions and Signal Analysis年度引用




書目名稱Fractal Functions, Dimensions and Signal Analysis年度引用學科排名




書目名稱Fractal Functions, Dimensions and Signal Analysis讀者反饋




書目名稱Fractal Functions, Dimensions and Signal Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:27:08 | 只看該作者
第147317主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:42:13 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:07:31 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:52:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:04:18 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:35:03 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:51:53 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:52:58 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:16:04 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
内丘县| 天津市| 象山县| 武平县| 山丹县| 青田县| 安溪县| 无为县| 德惠市| 万荣县| 全州县| 筠连县| 武隆县| 和平区| 阿图什市| 阜康市| 奎屯市| 孝感市| 浦江县| 玛纳斯县| 潞城市| 深圳市| 新竹市| 铜陵市| 察雅县| 方山县| 鄂州市| 波密县| 辽源市| 汝南县| 凤庆县| 达孜县| 堆龙德庆县| 嘉义县| 南岸区| 广饶县| 余姚市| 拉萨市| 峡江县| 固原市| 菏泽市|