找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Hyperbolic Manifolds; John G. Ratcliffe Textbook 20062nd edition Springer-Verlag New York 2006 Dimension.Grad.Isometrie.Vol

[復(fù)制鏈接]
查看: 28484|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:16:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foundations of Hyperbolic Manifolds
編輯John G. Ratcliffe
視頻videohttp://file.papertrans.cn/347/346986/346986.mp4
概述Carefully written textbook that has been heavily class-tested.Each chapter contains exercises and a section of historical remarks.Contains over 150 figures.Solutions manual available separately.Includ
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Foundations of Hyperbolic Manifolds;  John G. Ratcliffe Textbook 20062nd edition Springer-Verlag New York 2006 Dimension.Grad.Isometrie.Vol
描述.This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. ...The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincare?s fundamental polyhedron theorem. ...The exposition if at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds. ...The second edition is a thorough revision of the first edition that embodies hundreds of changes, corrections, and additions, including over sixty new lemmas, theorems, and corollaries.
出版日期Textbook 20062nd edition
關(guān)鍵詞Dimension; Grad; Isometrie; Volume; derivation; hyperbolic manifolds; manifold; polytope; topology
版次2
doihttps://doi.org/10.1007/978-0-387-47322-2
isbn_softcover978-1-4419-2202-1
isbn_ebook978-0-387-47322-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York 2006
The information of publication is updating

書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)




書目名稱Foundations of Hyperbolic Manifolds影響因子(影響力)學科排名




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度




書目名稱Foundations of Hyperbolic Manifolds網(wǎng)絡(luò)公開度學科排名




書目名稱Foundations of Hyperbolic Manifolds被引頻次




書目名稱Foundations of Hyperbolic Manifolds被引頻次學科排名




書目名稱Foundations of Hyperbolic Manifolds年度引用




書目名稱Foundations of Hyperbolic Manifolds年度引用學科排名




書目名稱Foundations of Hyperbolic Manifolds讀者反饋




書目名稱Foundations of Hyperbolic Manifolds讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:11 | 只看該作者
第146986主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:43:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:20:57 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:52:19 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:54:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:05:42 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:22:16 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:29:35 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:37:39 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冀州市| 罗城| 抚顺县| 泽普县| 鄱阳县| 景德镇市| 邢台县| 桐城市| 平陆县| 怀远县| 边坝县| 连山| 盐源县| 建德市| 正宁县| 云林县| 利辛县| 湘西| 天峨县| 盐边县| 屏南县| 开封市| 屏东县| 雷山县| 淮南市| 达州市| 蒙山县| 隆昌县| 镇赉县| 丘北县| 扎兰屯市| 云安县| 同江市| 修武县| 桓仁| 舒兰市| 耒阳市| 蒲江县| 丹巴县| 元谋县| 文安县|