找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foundations of Commutative Rings and Their Modules; Fanggui Wang,Hwankoo Kim Book 20161st edition Springer Nature Singapore Pte Ltd. 2016

[復(fù)制鏈接]
查看: 29401|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:00:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Foundations of Commutative Rings and Their Modules
編輯Fanggui Wang,Hwankoo Kim
視頻videohttp://file.papertrans.cn/347/346912/346912.mp4
概述Provides a self-contained treatment of commutative ring theory at the graduate level.Deals with recent hot topics including w-operation theory (which is related to a special torsion theory) and relati
叢書名稱Algebra and Applications
圖書封面Titlebook: Foundations of Commutative Rings and Their Modules;  Fanggui Wang,Hwankoo Kim Book 20161st edition Springer Nature Singapore Pte Ltd. 2016
描述This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and thelocal ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In
出版日期Book 20161st edition
關(guān)鍵詞(Classical) commutative ring theory; Multiplicative ideal theory; W-theory; Relative homological algebr
版次1
doihttps://doi.org/10.1007/978-981-10-3337-7
isbn_softcover978-981-10-9846-8
isbn_ebook978-981-10-3337-7Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Foundations of Commutative Rings and Their Modules影響因子(影響力)




書目名稱Foundations of Commutative Rings and Their Modules影響因子(影響力)學(xué)科排名




書目名稱Foundations of Commutative Rings and Their Modules網(wǎng)絡(luò)公開度




書目名稱Foundations of Commutative Rings and Their Modules網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foundations of Commutative Rings and Their Modules被引頻次




書目名稱Foundations of Commutative Rings and Their Modules被引頻次學(xué)科排名




書目名稱Foundations of Commutative Rings and Their Modules年度引用




書目名稱Foundations of Commutative Rings and Their Modules年度引用學(xué)科排名




書目名稱Foundations of Commutative Rings and Their Modules讀者反饋




書目名稱Foundations of Commutative Rings and Their Modules讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:26 | 只看該作者
第146912主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:09:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:48:22 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:35:06 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:01:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:28:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:37:42 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:42:06 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:40:22 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 葵青区| 东安县| 龙门县| 册亨县| 望奎县| 普安县| 鄄城县| 焦作市| 禹城市| 平罗县| 礼泉县| 进贤县| 蛟河市| 信丰县| 安岳县| 长汀县| 原平市| 成都市| 博爱县| 皮山县| 西华县| 达日县| 林西县| 涿鹿县| 晋城| 康保县| 庄河市| 庆城县| 济南市| 柳河县| 喀什市| 通州区| 子长县| 天门市| 修文县| 门源| 房产| 晋州市| 出国| 克拉玛依市|