找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foliations: Dynamics, Geometry and Topology; Masayuki Asaoka,Aziz El Kacimi Alaoui,Ken Richards Textbook 2014 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 32030|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:11:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foliations: Dynamics, Geometry and Topology
編輯Masayuki Asaoka,Aziz El Kacimi Alaoui,Ken Richards
視頻videohttp://file.papertrans.cn/345/344884/344884.mp4
概述Provides an introduction to Foliation Theory with a comprehensive overview of some recent developments of the theory.Includes results that so far were only available in original research articles.The
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Foliations: Dynamics, Geometry and Topology;  Masayuki Asaoka,Aziz El Kacimi Alaoui,Ken Richards Textbook 2014 The Editor(s) (if applicable
描述This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods converging in the study of foliations. The lectures by Aziz El Kacimi Alaoui provide an introduction to Foliation Theory with emphasis on examples and transverse structures. Steven Hurder‘s lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations: limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, Pesin Theory and hyperbolic, parabolic and elliptic types of foliations. The lectures by Masayuki?Asaoka compute the leafwise cohomology of foliations given by actions of Lie groups, and apply it to describe deformation of those actions. In his lectures, Ken?Richardson studies the properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will be interesting for mathematicians interested in the applications to foliations of subjects like Topology of Manifolds, Differential G
出版日期Textbook 2014
關(guān)鍵詞leafwise cohomology; leafwise geodesic flow; limit set; locally free action; transverse Dirac operator; t
版次1
doihttps://doi.org/10.1007/978-3-0348-0871-2
isbn_softcover978-3-0348-0870-5
isbn_ebook978-3-0348-0871-2Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Foliations: Dynamics, Geometry and Topology影響因子(影響力)




書目名稱Foliations: Dynamics, Geometry and Topology影響因子(影響力)學(xué)科排名




書目名稱Foliations: Dynamics, Geometry and Topology網(wǎng)絡(luò)公開度




書目名稱Foliations: Dynamics, Geometry and Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foliations: Dynamics, Geometry and Topology被引頻次




書目名稱Foliations: Dynamics, Geometry and Topology被引頻次學(xué)科排名




書目名稱Foliations: Dynamics, Geometry and Topology年度引用




書目名稱Foliations: Dynamics, Geometry and Topology年度引用學(xué)科排名




書目名稱Foliations: Dynamics, Geometry and Topology讀者反饋




書目名稱Foliations: Dynamics, Geometry and Topology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:58 | 只看該作者
第144884主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:27:23 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:27:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:00:49 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:50:48 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:02:30 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:24:48 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:58:11 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:06:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭水| 焦作市| 孟津县| 于都县| 防城港市| 南岸区| 余庆县| 灌阳县| 宁武县| 二连浩特市| 营口市| 甘谷县| 阿鲁科尔沁旗| 罗田县| 那曲县| 阿城市| 自贡市| 呼图壁县| 黄浦区| 社旗县| 桂阳县| 望谟县| 平果县| 当雄县| 揭西县| 陆川县| 湘潭市| 天全县| 阳山县| 福州市| 霸州市| 蚌埠市| 潜江市| 临沭县| 包头市| 黑龙江省| 华蓥市| 明水县| 当雄县| 梅河口市| 文昌市|