找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foliations on Riemannian Manifolds; Philippe Tondeur Book 1988 Springer-Verlag New York Inc. 1988 Mean curvature.Riemannian geometry.curva

[復(fù)制鏈接]
查看: 11269|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:32:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Foliations on Riemannian Manifolds
編輯Philippe Tondeur
視頻videohttp://file.papertrans.cn/345/344881/344881.mp4
叢書名稱Universitext
圖書封面Titlebook: Foliations on Riemannian Manifolds;  Philippe Tondeur Book 1988 Springer-Verlag New York Inc. 1988 Mean curvature.Riemannian geometry.curva
描述A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of folia
出版日期Book 1988
關(guān)鍵詞Mean curvature; Riemannian geometry; curvature; manifold
版次1
doihttps://doi.org/10.1007/978-1-4613-8780-0
isbn_softcover978-0-387-96707-3
isbn_ebook978-1-4613-8780-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York Inc. 1988
The information of publication is updating

書目名稱Foliations on Riemannian Manifolds影響因子(影響力)




書目名稱Foliations on Riemannian Manifolds影響因子(影響力)學(xué)科排名




書目名稱Foliations on Riemannian Manifolds網(wǎng)絡(luò)公開度




書目名稱Foliations on Riemannian Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Foliations on Riemannian Manifolds被引頻次




書目名稱Foliations on Riemannian Manifolds被引頻次學(xué)科排名




書目名稱Foliations on Riemannian Manifolds年度引用




書目名稱Foliations on Riemannian Manifolds年度引用學(xué)科排名




書目名稱Foliations on Riemannian Manifolds讀者反饋




書目名稱Foliations on Riemannian Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:39 | 只看該作者
第144881主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:36:25 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:17:17 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:10:09 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:38:19 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:27:20 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:51:22 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:47:42 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:54:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 乌苏市| 湘潭市| 凌源市| 江川县| 巴彦县| 卢湾区| 贞丰县| 绥中县| 淮安市| 深水埗区| 和平县| 灵台县| 卓资县| 双牌县| 凤冈县| 西青区| 金门县| 华安县| 鄂伦春自治旗| 桐柏县| 囊谦县| 秀山| 连平县| 鹤岗市| 邹平县| 丰原市| 阳山县| 马边| 聊城市| 潞西市| 吉林省| 阿鲁科尔沁旗| 金塔县| 永平县| 彭阳县| 河西区| 宁晋县| 邛崃市| 乌恰县| 读书|