找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Foliation Theory in Algebraic Geometry; Paolo Cascini,James McKernan,Jorge Vitório Pereira Conference proceedings 2016 Springer Internatio

[復制鏈接]
查看: 34365|回復: 41
樓主
發(fā)表于 2025-3-21 18:09:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Foliation Theory in Algebraic Geometry
編輯Paolo Cascini,James McKernan,Jorge Vitório Pereira
視頻videohttp://file.papertrans.cn/345/344879/344879.mp4
叢書名稱Simons Symposia
圖書封面Titlebook: Foliation Theory in Algebraic Geometry;  Paolo Cascini,James McKernan,Jorge Vitório Pereira Conference proceedings 2016 Springer Internatio
描述Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.?.Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions..Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solu
出版日期Conference proceedings 2016
關(guān)鍵詞Algebraic Geometry; Canonical Singularities; Foliation; Projective Manifolds; Rational Curves
版次1
doihttps://doi.org/10.1007/978-3-319-24460-0
isbn_softcover978-3-319-79632-1
isbn_ebook978-3-319-24460-0Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Foliation Theory in Algebraic Geometry影響因子(影響力)




書目名稱Foliation Theory in Algebraic Geometry影響因子(影響力)學科排名




書目名稱Foliation Theory in Algebraic Geometry網(wǎng)絡(luò)公開度




書目名稱Foliation Theory in Algebraic Geometry網(wǎng)絡(luò)公開度學科排名




書目名稱Foliation Theory in Algebraic Geometry被引頻次




書目名稱Foliation Theory in Algebraic Geometry被引頻次學科排名




書目名稱Foliation Theory in Algebraic Geometry年度引用




書目名稱Foliation Theory in Algebraic Geometry年度引用學科排名




書目名稱Foliation Theory in Algebraic Geometry讀者反饋




書目名稱Foliation Theory in Algebraic Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:02 | 只看該作者
第144879主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:52:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:18:45 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:13:33 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:48:04 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:03:18 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:44:38 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:58:53 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:03:26 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
区。| 澳门| 荣成市| 新巴尔虎左旗| 封丘县| 山东省| 都兰县| 贵南县| 惠州市| 上饶县| 固安县| 贺兰县| 定西市| 安陆市| 盖州市| 兴义市| 健康| 象州县| 河东区| 岳池县| 丰县| 广宁县| 屯门区| 冷水江市| 靖安县| 吐鲁番市| 洞口县| 偏关县| 金昌市| 林甸县| 广丰县| 安徽省| 宜宾县| 磴口县| 广昌县| 诸暨市| 清丰县| 永靖县| 南涧| 石景山区| 勃利县|