找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Flag Varieties; An Interplay of Geom V. Lakshmibai,Justin Brown Book 2018Latest edition Springer Nature Singapore Pte Ltd. 2018 and Hindust

[復(fù)制鏈接]
查看: 51447|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:35:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Flag Varieties
副標(biāo)題An Interplay of Geom
編輯V. Lakshmibai,Justin Brown
視頻videohttp://file.papertrans.cn/345/344068/344068.mp4
概述Elucidates its richness of flag varieties and their importance in geometric objects.Discusses the representation theory of complex semisimple Lie algebras, semisimple algebraic groups and symmetric gr
叢書(shū)名稱(chēng)Texts and Readings in Mathematics
圖書(shū)封面Titlebook: Flag Varieties; An Interplay of Geom V. Lakshmibai,Justin Brown Book 2018Latest edition Springer Nature Singapore Pte Ltd. 2018 and Hindust
描述.This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups.?In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties.?Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety.?This discussion is carried out as a consequence of standard monomial theory.?Consequently, this book includes standard monomial theory and some important applications—singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The fir
出版日期Book 2018Latest edition
關(guān)鍵詞Semisimple Rings; Finite Groups; Symmetric Group; Symmetric Polynomials; Schur-Weyl Duality; Semisimple L
版次2
doihttps://doi.org/10.1007/978-981-13-1393-6
isbn_ebook978-981-13-1393-6Series ISSN 2366-8717 Series E-ISSN 2366-8725
issn_series 2366-8717
copyrightSpringer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 2018
The information of publication is updating

書(shū)目名稱(chēng)Flag Varieties影響因子(影響力)




書(shū)目名稱(chēng)Flag Varieties影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Flag Varieties網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Flag Varieties網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Flag Varieties被引頻次




書(shū)目名稱(chēng)Flag Varieties被引頻次學(xué)科排名




書(shū)目名稱(chēng)Flag Varieties年度引用




書(shū)目名稱(chēng)Flag Varieties年度引用學(xué)科排名




書(shū)目名稱(chēng)Flag Varieties讀者反饋




書(shū)目名稱(chēng)Flag Varieties讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:49 | 只看該作者
第144068主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:16:13 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:34:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:24:57 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:01:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:57:13 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:38:24 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:46:37 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:23:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋州市| 花莲县| 永胜县| 邹平县| 鄯善县| 晋江市| 门源| 新兴县| 平武县| 湖南省| 榆树市| 敖汉旗| 昌都县| 稻城县| 铅山县| 星子县| 尚义县| 邢台市| 镇远县| 宿州市| 德令哈市| 新竹市| 年辖:市辖区| 扬中市| 长葛市| 贞丰县| 江陵县| 镇沅| 祁东县| 海晏县| 镶黄旗| 拉萨市| 台南县| 涞水县| 丰宁| 邛崃市| 宁明县| 莲花县| 临西县| 房山区| 北海市|