找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Fixed Point Theory in Metric Type Spaces; Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco Book 2015 Springer International Publishing S

[復(fù)制鏈接]
查看: 29353|回復(fù): 51
樓主
發(fā)表于 2025-3-21 16:04:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces
編輯Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco
視頻videohttp://file.papertrans.cn/345/344041/344041.mp4
概述Written by the leading experts in the field of fixed point theory and metric type spaces.Presents a self-contained account of the theory, techniques, and results in the rapidly-growing field of metric
圖書(shū)封面Titlebook: Fixed Point Theory in Metric Type Spaces;  Ravi P. Agarwal,Erdal Karap?nar,Antonio Francisco  Book 2015 Springer International Publishing S
描述Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology..The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework..Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research..
出版日期Book 2015
關(guān)鍵詞Banach Mappings; Berinde and Borcut’s Tripled Fixed Point Theorems; Expansive mappings; Fixed Point The
版次1
doihttps://doi.org/10.1007/978-3-319-24082-4
isbn_softcover978-3-319-79576-8
isbn_ebook978-3-319-24082-4
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces影響因子(影響力)




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces被引頻次




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces被引頻次學(xué)科排名




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces年度引用




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces年度引用學(xué)科排名




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces讀者反饋




書(shū)目名稱(chēng)Fixed Point Theory in Metric Type Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:42 | 只看該作者
第144041主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:48:29 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:38:04 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:46:31 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:10:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:45:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:58:02 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:41:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:39:41 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
财经| 忻城县| 高青县| 新余市| 岐山县| 灌南县| 洛阳市| 石屏县| 金山区| 策勒县| 安义县| 托里县| 商丘市| 勃利县| 日喀则市| 织金县| 乌鲁木齐县| 海丰县| 东兰县| 鄂托克前旗| 江口县| 蓬安县| 安化县| 乐平市| 康平县| 阳原县| 同仁县| 通州市| 二连浩特市| 翼城县| 滁州市| 巴南区| 偏关县| 永登县| 钟祥市| 琼中| 武汉市| 西乌| 建湖县| 钦州市| 阿坝|