找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fixed Point Theory for Lipschitzian-type Mappings with Applications; D. R. Sahu,Donal O‘Regan,Ravi P. Agarwal Book 2009 Springer-Verlag Ne

[復(fù)制鏈接]
查看: 53109|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:20:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications
編輯D. R. Sahu,Donal O‘Regan,Ravi P. Agarwal
視頻videohttp://file.papertrans.cn/345/344037/344037.mp4
概述Presents many basic techniques and results in fixed point theory.Self-contained presentation.Good graduate text with exercises at the end of each chapter
叢書名稱Topological Fixed Point Theory and Its Applications
圖書封面Titlebook: Fixed Point Theory for Lipschitzian-type Mappings with Applications;  D. R. Sahu,Donal O‘Regan,Ravi P. Agarwal Book 2009 Springer-Verlag Ne
描述.In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. ..This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. ..This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geome
出版日期Book 2009
關(guān)鍵詞Convexity; Fixed-Point Theory; Operator theory; Smooth function; banach spaces; convergence theory; fixed
版次1
doihttps://doi.org/10.1007/978-0-387-75818-3
isbn_softcover978-1-4419-2606-7
isbn_ebook978-0-387-75818-3
copyrightSpringer-Verlag New York 2009
The information of publication is updating

書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications影響因子(影響力)




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications影響因子(影響力)學(xué)科排名




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications網(wǎng)絡(luò)公開度




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications被引頻次




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications被引頻次學(xué)科排名




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications年度引用




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications年度引用學(xué)科排名




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications讀者反饋




書目名稱Fixed Point Theory for Lipschitzian-type Mappings with Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:51 | 只看該作者
第144037主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:33:06 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:46:21 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:38:09 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:32:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:42:33 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:25:28 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:20:09 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:41:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵山县| 绥阳县| 溆浦县| 迁西县| 随州市| 融水| 军事| 中西区| 宿迁市| 乐亭县| 商水县| 中江县| 琼结县| 海林市| 诸城市| 南汇区| 崇礼县| 灵武市| 剑河县| 彰武县| 昭通市| 绥芬河市| 古田县| 当涂县| 武清区| 乐陵市| 和政县| 镇宁| 大洼县| 灵石县| 育儿| 治多县| 留坝县| 西城区| 东兴市| 舞阳县| 竹北市| 怀集县| 门头沟区| 通化市| 郴州市|