找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fitting Splines to a Parametric Function; Alvin Penner Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 47200|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:01:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fitting Splines to a Parametric Function
編輯Alvin Penner
視頻videohttp://file.papertrans.cn/345/344011/344011.mp4
概述Investigates if the fitted spline shapes respond smoothly to changes in the shape of the curve being fit, for example when discussing the animation of shapes.Presents a general derivation of the ODF m
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Fitting Splines to a Parametric Function;  Alvin Penner Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG
描述This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology..The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of the physical shapes of objects, due to the fact that it produces a fitted result that is invariant with respect to the size and orientation of the object. It is normally used to produce a single optimum fit to a specific object; this work focuses instead on the issue of whether the fit responds continuously as the shape of the object changes. The theory of splines develops user-friendly ways of manipulating six different splines to fit the shape of a simple family of epiTrochoid curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines. This work will focus on issues that arise when mathematically optimizing the fit. There are typically multiple solutions to the ODF method, and the number of solutions can often change as the object changes shape, so two topological questions immediately arise: are there rules that can be applied concerning the relative number of loca
出版日期Book 2019
關(guān)鍵詞Least Squares Orthogonal Distance Fitting; ODF method; spline theory; cubic Bézier solutions; Beta2 spli
版次1
doihttps://doi.org/10.1007/978-3-030-12551-6
isbn_softcover978-3-030-12550-9
isbn_ebook978-3-030-12551-6Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Fitting Splines to a Parametric Function影響因子(影響力)




書目名稱Fitting Splines to a Parametric Function影響因子(影響力)學(xué)科排名




書目名稱Fitting Splines to a Parametric Function網(wǎng)絡(luò)公開度




書目名稱Fitting Splines to a Parametric Function網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fitting Splines to a Parametric Function被引頻次




書目名稱Fitting Splines to a Parametric Function被引頻次學(xué)科排名




書目名稱Fitting Splines to a Parametric Function年度引用




書目名稱Fitting Splines to a Parametric Function年度引用學(xué)科排名




書目名稱Fitting Splines to a Parametric Function讀者反饋




書目名稱Fitting Splines to a Parametric Function讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:58 | 只看該作者
第144011主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:55:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:36:12 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:05:16 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:26:51 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:34:24 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:26:13 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:38:07 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:35:35 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安塞县| 理塘县| 锦屏县| 桑日县| 佛坪县| 于田县| 南安市| 连州市| 纳雍县| 昂仁县| 南丹县| 淄博市| 米易县| 和林格尔县| 汉寿县| 桐城市| 西和县| 长沙市| 沁源县| 吉隆县| 康保县| 陆丰市| 清水河县| 且末县| 德州市| 台南市| 隆尧县| 长岛县| 文山县| 页游| 昌图县| 德安县| 浠水县| 永胜县| 凤山县| 嘉善县| 集安市| 页游| 阿坝县| 新化县| 龙山县|