找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finiteness and Regularity in Semigroups and Formal Languages; Aldo Luca,Stefano Varricchio Book 1999 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
查看: 6424|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:32:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finiteness and Regularity in Semigroups and Formal Languages
編輯Aldo Luca,Stefano Varricchio
視頻videohttp://file.papertrans.cn/344/343703/343703.mp4
概述Rigorous presentation of latest research results A unique and definitive monograph on a central subject in theoretical computer science with various applications.A must for all experts in theoretical
叢書名稱Monographs in Theoretical Computer Science. An EATCS Series
圖書封面Titlebook: Finiteness and Regularity in Semigroups and Formal Languages;  Aldo Luca,Stefano Varricchio Book 1999 Springer-Verlag Berlin Heidelberg 199
描述The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter- est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet which is usually called the theory of "unavoidable" regularities. The unavoidable regularities ofsufficiently large words over a finite alpha- bet are very important in the study of finiteness conditions for semigroups. This problem consists in considering conditions which are satisfied by a fi- nite semigroup and are such as to assure that a semigroup satisfying them is finite. The most natural requirement is that the semigroup is finitely gener- ated. Ifone supposes that the semigroup is also periodic the study offiniteness conditions for these semigroups (or groups) is called the Burnside problem for semigroups (or groups). There exists an important relationship with the theory of finite automata because, as is well known, a language L over a fi- nite alphabet is regular (that is, recognizable by a finite automaton) if and only if its syntactic monoid S(L) is finite. Henc
出版日期Book 1999
關(guān)鍵詞Monoid; algebra; combinatorics; combinatorics on word; combinatorics on words; computer science; finitenes
版次1
doihttps://doi.org/10.1007/978-3-642-59849-4
isbn_softcover978-3-642-64150-3
isbn_ebook978-3-642-59849-4Series ISSN 1431-2654 Series E-ISSN 2193-2069
issn_series 1431-2654
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書目名稱Finiteness and Regularity in Semigroups and Formal Languages影響因子(影響力)




書目名稱Finiteness and Regularity in Semigroups and Formal Languages影響因子(影響力)學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages網(wǎng)絡(luò)公開度




書目名稱Finiteness and Regularity in Semigroups and Formal Languages網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages被引頻次




書目名稱Finiteness and Regularity in Semigroups and Formal Languages被引頻次學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages年度引用




書目名稱Finiteness and Regularity in Semigroups and Formal Languages年度引用學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages讀者反饋




書目名稱Finiteness and Regularity in Semigroups and Formal Languages讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:28 | 只看該作者
第143703主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:10:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:48:34 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:45:17 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:44:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:24:08 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:17:55 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:03:18 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:40:02 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湾仔区| 环江| 南宫市| 枞阳县| 灵台县| 长寿区| 高密市| 灵丘县| 凤冈县| 砀山县| 噶尔县| 涡阳县| 江口县| 左云县| 高青县| 普定县| 安平县| 囊谦县| 衡阳县| 康平县| 南溪县| 白沙| 玛纳斯县| 浦东新区| 盐边县| 三原县| 军事| 洛阳市| 大石桥市| 桂东县| 合山市| 安多县| 双柏县| 彝良县| 九寨沟县| 淳化县| 石阡县| 辰溪县| 武穴市| 得荣县| 昆明市|