找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finiteness and Regularity in Semigroups and Formal Languages; Aldo Luca,Stefano Varricchio Book 1999 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
查看: 6424|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:32:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finiteness and Regularity in Semigroups and Formal Languages
編輯Aldo Luca,Stefano Varricchio
視頻videohttp://file.papertrans.cn/344/343703/343703.mp4
概述Rigorous presentation of latest research results A unique and definitive monograph on a central subject in theoretical computer science with various applications.A must for all experts in theoretical
叢書名稱Monographs in Theoretical Computer Science. An EATCS Series
圖書封面Titlebook: Finiteness and Regularity in Semigroups and Formal Languages;  Aldo Luca,Stefano Varricchio Book 1999 Springer-Verlag Berlin Heidelberg 199
描述The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter- est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet which is usually called the theory of "unavoidable" regularities. The unavoidable regularities ofsufficiently large words over a finite alpha- bet are very important in the study of finiteness conditions for semigroups. This problem consists in considering conditions which are satisfied by a fi- nite semigroup and are such as to assure that a semigroup satisfying them is finite. The most natural requirement is that the semigroup is finitely gener- ated. Ifone supposes that the semigroup is also periodic the study offiniteness conditions for these semigroups (or groups) is called the Burnside problem for semigroups (or groups). There exists an important relationship with the theory of finite automata because, as is well known, a language L over a fi- nite alphabet is regular (that is, recognizable by a finite automaton) if and only if its syntactic monoid S(L) is finite. Henc
出版日期Book 1999
關(guān)鍵詞Monoid; algebra; combinatorics; combinatorics on word; combinatorics on words; computer science; finitenes
版次1
doihttps://doi.org/10.1007/978-3-642-59849-4
isbn_softcover978-3-642-64150-3
isbn_ebook978-3-642-59849-4Series ISSN 1431-2654 Series E-ISSN 2193-2069
issn_series 1431-2654
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書目名稱Finiteness and Regularity in Semigroups and Formal Languages影響因子(影響力)




書目名稱Finiteness and Regularity in Semigroups and Formal Languages影響因子(影響力)學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages網(wǎng)絡(luò)公開度




書目名稱Finiteness and Regularity in Semigroups and Formal Languages網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages被引頻次




書目名稱Finiteness and Regularity in Semigroups and Formal Languages被引頻次學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages年度引用




書目名稱Finiteness and Regularity in Semigroups and Formal Languages年度引用學(xué)科排名




書目名稱Finiteness and Regularity in Semigroups and Formal Languages讀者反饋




書目名稱Finiteness and Regularity in Semigroups and Formal Languages讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:28 | 只看該作者
第143703主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:10:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:48:34 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:45:17 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:44:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:24:08 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:17:55 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:03:18 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:40:02 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲水县| 绥滨县| 内丘县| 九龙县| 曲靖市| 大港区| 枣强县| 临清市| 揭阳市| 盈江县| 拉孜县| 富川| 台南县| 大丰市| 新昌县| 东宁县| 海门市| 大城县| 安西县| 大姚县| 丁青县| 台江县| 绵阳市| 资溪县| 昔阳县| 称多县| 平乡县| 蚌埠市| 辉县市| 渝中区| 调兵山市| 鹤庆县| 银川市| 凤翔县| 且末县| 石屏县| 蒲江县| 南华县| 连平县| 蓝山县| 全州县|