找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finitely Generated Abelian Groups and Similarity of Matrices over a Field; Christopher Norman Textbook 2012 Springer-Verlag London Limited

[復制鏈接]
查看: 40433|回復: 35
樓主
發(fā)表于 2025-3-21 17:22:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field
編輯Christopher Norman
視頻videohttp://file.papertrans.cn/344/343699/343699.mp4
概述The theory of finitely generated abelian groups is introduced in an understandable and concrete way.The analogous theory of similarity of square matrices over a field, including the Jordan form, is ex
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Finitely Generated Abelian Groups and Similarity of Matrices over a Field;  Christopher Norman Textbook 2012 Springer-Verlag London Limited
描述.At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.? However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases.? Starting with matrices over the integers, Part?1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical.? The analogous theory of matrix similarity over a field is then developed in Part?2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal.? Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form..?.The reader is assumed to be familiar with the elementary properties of rings and fields.? Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of
出版日期Textbook 2012
關(guān)鍵詞Abelian groups; Smith normal form; equivalent matrices; homomorphisms and isomorphisms; invariant factor
版次1
doihttps://doi.org/10.1007/978-1-4471-2730-7
isbn_softcover978-1-4471-2729-1
isbn_ebook978-1-4471-2730-7Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London Limited 2012
The information of publication is updating

書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field影響因子(影響力)




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field影響因子(影響力)學科排名




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field網(wǎng)絡(luò)公開度




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field網(wǎng)絡(luò)公開度學科排名




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field被引頻次




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field被引頻次學科排名




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field年度引用




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field年度引用學科排名




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field讀者反饋




書目名稱Finitely Generated Abelian Groups and Similarity of Matrices over a Field讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:57 | 只看該作者
第143699主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:36:42 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:05:02 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:33:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:43:51 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:10:13 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:56:27 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:44:06 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
绥芬河市| 通化市| 安多县| 固镇县| 乌审旗| 同仁县| 武宁县| 襄汾县| 红原县| 白城市| 康马县| 扎赉特旗| 兴海县| 揭东县| 肥西县| 石门县| 沙田区| 水城县| 天峨县| 清水县| 额济纳旗| 乐清市| 浦县| 巩留县| 蛟河市| 长沙市| 博白县| 聂拉木县| 岐山县| 遵义县| 临清市| 瑞金市| 英吉沙县| 扎赉特旗| 德清县| 南陵县| 兰坪| 邮箱| 罗城| 英山县| 柳林县|