找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems; FVCA10, Strasbourg, Emmanuel Franck,Jürgen Fuhrmann,L

[復(fù)制鏈接]
查看: 14141|回復(fù): 66
樓主
發(fā)表于 2025-3-21 18:00:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems
副標(biāo)題FVCA10, Strasbourg,
編輯Emmanuel Franck,Jürgen Fuhrmann,Laurent Navoret
視頻videohttp://file.papertrans.cn/344/343668/343668.mp4
概述Comprehensive overview of the state of the art.Both theoretical and applied aspects are covered.Authors are leading researchers from the community
叢書(shū)名稱(chēng)Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems; FVCA10, Strasbourg,  Emmanuel Franck,Jürgen Fuhrmann,L
描述.This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023..The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differentialequations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used i
出版日期Conference proceedings 2023
關(guān)鍵詞Conference Proceedings; conservation and balance laws; high-performance computing; numerical analysis; f
版次1
doihttps://doi.org/10.1007/978-3-031-40860-1
isbn_softcover978-3-031-40862-5
isbn_ebook978-3-031-40860-1Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems影響因子(影響力)




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems被引頻次




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems年度引用




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems年度引用學(xué)科排名




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems讀者反饋




書(shū)目名稱(chēng)Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:46 | 只看該作者
第143668主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:58:52 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:49:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:18:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:03 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:44:07 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:07:30 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:46:43 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:32:22 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石门县| 漳州市| 广宗县| 施甸县| 贺州市| 莒南县| 玛沁县| 那曲县| 保康县| 巴东县| 吉木乃县| 宁远县| 加查县| 灯塔市| 兴城市| 台中市| 丹寨县| 上蔡县| 新沂市| 东台市| 谷城县| 岳西县| 边坝县| 会理县| 襄汾县| 普陀区| 抚远县| 洛川县| 大田县| 阿克陶县| 金山区| 沙洋县| 安顺市| 通榆县| 长葛市| 福泉市| 湄潭县| 钦州市| 那曲县| 阳山县| 垫江县|