找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems; FVCA10, Strasbourg, Emmanuel Franck,Jürgen Fuhrmann,L

[復(fù)制鏈接]
查看: 31687|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:32:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems
副標(biāo)題FVCA10, Strasbourg,
編輯Emmanuel Franck,Jürgen Fuhrmann,Laurent Navoret
視頻videohttp://file.papertrans.cn/344/343667/343667.mp4
概述Comprehensive overview of the state of the art.Both theoretical and applied aspects are covered.Authors are leading researchers from the community
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems; FVCA10, Strasbourg,  Emmanuel Franck,Jürgen Fuhrmann,L
描述.This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023..The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used i
出版日期Conference proceedings 2023
關(guān)鍵詞Conference Proceedings; numerical analysis; high-performance computing; finite volume schemes; conservat
版次1
doihttps://doi.org/10.1007/978-3-031-40864-9
isbn_softcover978-3-031-40866-3
isbn_ebook978-3-031-40864-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems影響因子(影響力)




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems影響因子(影響力)學(xué)科排名




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems被引頻次




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems被引頻次學(xué)科排名




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems年度引用




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems年度引用學(xué)科排名




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems讀者反饋




書目名稱Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:53 | 只看該作者
第143667主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:57:33 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:51:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:37:39 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:56:08 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:16:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:06:01 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:22:06 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:17:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合作市| 赤城县| 故城县| 桓仁| 淳安县| 嵊泗县| 苗栗县| 腾冲县| 兴义市| 邓州市| 和平区| 潢川县| 视频| 民勤县| 修水县| 信宜市| 辽中县| 浏阳市| 渭源县| 南康市| 淮南市| 南丰县| 峨眉山市| 游戏| 奉化市| 苏尼特左旗| 怀宁县| 资兴市| 巫溪县| 九龙县| 山丹县| 灵川县| 醴陵市| 松江区| 文水县| 塔城市| 武功县| 光山县| 平谷区| 通海县| 清流县|