找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems; FVCA 8, Lille, Franc Clément Cancès,Pascal Omne

[復制鏈接]
查看: 9272|回復: 64
樓主
發(fā)表于 2025-3-21 17:31:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
副標題FVCA 8, Lille, Franc
編輯Clément Cancès,Pascal Omnes
視頻videohttp://file.papertrans.cn/344/343665/343665.mp4
概述Offers a comprehensive overview of the state of the art of finite volume applications.Covers both theoretical and applied aspects.Includes contributions from leading researchers in the field.Includes
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems; FVCA 8, Lille, Franc Clément Cancès,Pascal Omne
描述.This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics..The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete l.evel. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications..The book is useful for researchers, PhD and
出版日期Conference proceedings 2017
關(guān)鍵詞65-06, 65Mxx, 65Nxx, 76xx, 78xx,85-08, 86-08, 92-; finite volume schemes; conservation and balance law
版次1
doihttps://doi.org/10.1007/978-3-319-57394-6
isbn_softcover978-3-319-86152-4
isbn_ebook978-3-319-57394-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems影響因子(影響力)




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems影響因子(影響力)學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems被引頻次




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems被引頻次學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems年度引用




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems年度引用學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems讀者反饋




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:37 | 只看該作者
第143665主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:40:11 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:55:30 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:16:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:42:58 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:43:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:40:05 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:42:15 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:22:33 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汕头市| 永德县| 麻阳| 阿鲁科尔沁旗| 海原县| 宁安市| 璧山县| 凤山县| 龙南县| 碌曲县| 菏泽市| 亚东县| 宁阳县| 县级市| 高邮市| 旺苍县| 平凉市| 芜湖市| 田林县| 申扎县| 久治县| 汉沽区| 北京市| 霍林郭勒市| 临桂县| 福清市| 乌兰浩特市| 库伦旗| 股票| 镇坪县| 额敏县| 石林| 阿坝| 泾阳县| 巴东县| 凌源市| 大竹县| 清水河县| 阆中市| 岳普湖县| 漯河市|