找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems; FVCA 7, Berlin, June Jürgen Fuhrmann,Mario Ohlberg

[復(fù)制鏈接]
查看: 10192|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:17:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
副標(biāo)題FVCA 7, Berlin, June
編輯Jürgen Fuhrmann,Mario Ohlberger,Christian Rohde
視頻videohttp://file.papertrans.cn/344/343663/343663.mp4
概述Comprehensive overview of the state of the art.Presents contributions that report successful applications.Reviewed by experts
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems; FVCA 7, Berlin, June Jürgen Fuhrmann,Mario Ohlberg
描述.The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics..The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphys
出版日期Conference proceedings 2014
關(guān)鍵詞65-06, 65Mxx, 65Nxx, 76xx, 78xx, 85-08, 86-08, 92-08; compatible discretizations; convergence analysis
版次1
doihttps://doi.org/10.1007/978-3-319-05591-6
isbn_softcover978-3-319-38288-3
isbn_ebook978-3-319-05591-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems影響因子(影響力)




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems影響因子(影響力)學(xué)科排名




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems網(wǎng)絡(luò)公開度




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems被引頻次




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems被引頻次學(xué)科排名




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems年度引用




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems年度引用學(xué)科排名




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems讀者反饋




書目名稱Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:24 | 只看該作者
第143663主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:36:58 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:37:59 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:23:07 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:58:09 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:58:38 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:26:15 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:18:31 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:28:28 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 南投县| 高雄市| 上林县| 临海市| 米脂县| 宜章县| 民和| 甘洛县| 亚东县| 寿光市| 建平县| 宁波市| 黄陵县| 诸暨市| 富蕴县| 龙岩市| 榆社县| 荆门市| 宣武区| 蒙山县| 呈贡县| 佛教| 胶南市| 阜康市| 海林市| 上蔡县| 桂阳县| 丹棱县| 吴忠市| 大丰市| 綦江县| 正宁县| 乌拉特中旗| 龙游县| 启东市| 三门峡市| 梧州市| 繁昌县| 佛学| 万荣县|