找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fields and Galois Theory; John M. Howie Textbook 2006 Springer-Verlag London 2006 Abstract algebra.Field theory.Galois theory.Group theory

[復(fù)制鏈接]
查看: 23043|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:11:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fields and Galois Theory
編輯John M. Howie
視頻videohttp://file.papertrans.cn/343/342676/342676.mp4
概述Modern and student-friendly introduction to this popular subject: it takes a more "natural" approach and develops the theory at a gentle pace with an emphasis on clear explanations.Features plenty of
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Fields and Galois Theory;  John M. Howie Textbook 2006 Springer-Verlag London 2006 Abstract algebra.Field theory.Galois theory.Group theory
描述Fieldsaresetsinwhichallfouroftherationaloperations,memorablydescribed by the mathematician Lewis Carroll as “perdition, distraction, ugli?cation and derision”, can be carried out. They are assuredly the most natural of algebraic objects, since most of mathematics takes place in one ?eld or another, usually the rational ?eld Q, or the real ?eld R, or the complex ?eld C. This book sets out to exhibit the ways in which a systematic study of ?elds, while interesting in its own right, also throws light on several aspects of classical mathematics, notably on ancient geometrical problems such as “squaring the circle”, and on the solution of polynomial equations. The treatment is unashamedly unhistorical. When Galois and Abel dem- strated that a solution by radicals of a quintic equation is not possible, they dealt with permutations of roots. From sets of permutations closed under c- position came the idea of a permutation group, and only later the idea of an abstract group. In solving a long-standing problem of classical algebra, they laid the foundations of modern abstract algebra.
出版日期Textbook 2006
關(guān)鍵詞Abstract algebra; Field theory; Galois theory; Group theory; Polynomials; algebra; finite field
版次1
doihttps://doi.org/10.1007/978-1-84628-181-5
isbn_softcover978-1-85233-986-9
isbn_ebook978-1-84628-181-5Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 2006
The information of publication is updating

書目名稱Fields and Galois Theory影響因子(影響力)




書目名稱Fields and Galois Theory影響因子(影響力)學(xué)科排名




書目名稱Fields and Galois Theory網(wǎng)絡(luò)公開度




書目名稱Fields and Galois Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fields and Galois Theory被引頻次




書目名稱Fields and Galois Theory被引頻次學(xué)科排名




書目名稱Fields and Galois Theory年度引用




書目名稱Fields and Galois Theory年度引用學(xué)科排名




書目名稱Fields and Galois Theory讀者反饋




書目名稱Fields and Galois Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:15 | 只看該作者
第142676主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:18:09 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:58 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:45:37 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:15:08 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:31:16 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:20:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:52:22 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:29:35 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社旗县| 乡宁县| 浦县| 蒙山县| 界首市| 铁力市| 翼城县| 咸宁市| 保亭| 阳泉市| 田阳县| 东源县| 桓台县| 灵璧县| 丰镇市| 喀什市| 四川省| 松溪县| 赣榆县| 清新县| 伊宁市| 中江县| 清原| 墨竹工卡县| 延津县| 车致| 枣阳市| 白水县| 仁布县| 邵阳市| 卫辉市| 新津县| 荣昌县| 通州区| 西平县| 和林格尔县| 华安县| 台中市| 石屏县| 双辽市| 珠海市|