找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fibonacci‘s De Practica Geometrie; Barnabas Hughes Book 2008 Springer-Verlag New York 2008 Area.DEX.Division.Euclid.Fitting.Geometrie.Prol

[復(fù)制鏈接]
查看: 33331|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:52:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Fibonacci‘s De Practica Geometrie
編輯Barnabas Hughes
視頻videohttp://file.papertrans.cn/343/342485/342485.mp4
概述High quality translation with supplemental text to explain text that has been more freely translated.Contains informative commentary preceding each chapter of text.Presents the resources upon which Fi
叢書名稱Sources and Studies in the History of Mathematics and Physical Sciences
圖書封面Titlebook: Fibonacci‘s De Practica Geometrie;  Barnabas Hughes Book 2008 Springer-Verlag New York 2008 Area.DEX.Division.Euclid.Fitting.Geometrie.Prol
描述.Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 – ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid’s Elements, Fibonacci instructed his reader how to compute with Pisan units of measure, find square and cube roots, determine dimensions of both rectilinear and curved surfaces and solids, work with tables for indirect measurement, and perhaps finally fire the imagination of builders with analyses of pentagons and decagons. His work exceeded what readers would expect for the topic. Practical Geometry is the name of the craft for medieval landmeasurers, otherwise known as surveyors in modern times. Fibonacci wrote De practica geometrie for these artisans, a fitting complement to Liber abbaci. He had been at work on the geometry project for some time when a friend encouraged him to complete the task, which he did, going beyond the merely practical, as he remarked, “Some parts are presented according to geometric demonstrations, other parts in dimensions after a lay fashion, with which they wish to engage according to the more common prac
出版日期Book 2008
關(guān)鍵詞Area; DEX; Division; Euclid; Fitting; Geometrie; Prolog; boundary element method; construction; geometry; meas
版次1
doihttps://doi.org/10.1007/978-0-387-72931-2
isbn_softcover978-1-4419-2501-5
isbn_ebook978-0-387-72931-2Series ISSN 2196-8810 Series E-ISSN 2196-8829
issn_series 2196-8810
copyrightSpringer-Verlag New York 2008
The information of publication is updating

書目名稱Fibonacci‘s De Practica Geometrie影響因子(影響力)




書目名稱Fibonacci‘s De Practica Geometrie影響因子(影響力)學(xué)科排名




書目名稱Fibonacci‘s De Practica Geometrie網(wǎng)絡(luò)公開度




書目名稱Fibonacci‘s De Practica Geometrie網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fibonacci‘s De Practica Geometrie被引頻次




書目名稱Fibonacci‘s De Practica Geometrie被引頻次學(xué)科排名




書目名稱Fibonacci‘s De Practica Geometrie年度引用




書目名稱Fibonacci‘s De Practica Geometrie年度引用學(xué)科排名




書目名稱Fibonacci‘s De Practica Geometrie讀者反饋




書目名稱Fibonacci‘s De Practica Geometrie讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:53 | 只看該作者
第142485主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:01:31 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:58:25 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:06:50 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:22:33 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:25:27 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:06:35 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:16:49 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:03:15 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 光山县| 陆河县| 菏泽市| 历史| 福鼎市| 广德县| 马尔康县| 河北省| 镇平县| 涪陵区| 岱山县| 玉屏| 高平市| 克拉玛依市| 武隆县| 宣城市| 九寨沟县| 宣武区| 胶州市| 佛冈县| 延安市| 调兵山市| 连城县| 昔阳县| 玛多县| 什邡市| 泌阳县| 肇州县| 哈巴河县| 甘洛县| 鄂州市| 且末县| 老河口市| 保靖县| 南安市| 安龙县| 海安县| 蕉岭县| 阿拉尔市| 德兴市|