找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning; A Comprehensive Over Heiko Ludwig,Nathalie Baracaldo Book 2022 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
查看: 27266|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:49:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Federated Learning
副標題A Comprehensive Over
編輯Heiko Ludwig,Nathalie Baracaldo
視頻videohttp://file.papertrans.cn/342/341592/341592.mp4
概述First major book on Federated Learning, and the standard text on the topic by the leading researchers worldwide.Federated Learning as a concept is only a few years old but has seen a rapid increase in
圖書封面Titlebook: Federated Learning; A Comprehensive Over Heiko Ludwig,Nathalie Baracaldo Book 2022 The Editor(s) (if applicable) and The Author(s), under e
描述.Federated Learning: A Comprehensive Overview of Methods and Applications. presents an in-depth discussion of the most important issues and approaches to federated learning for researchers and practitioners.?.Federated Learning (FL) is an approach to machine learning in which the training data are not managed centrally. Data are retained by data parties that participate in the FL process and are not shared with any other entity. This makes FL an increasingly popular solution for machine learning tasks for which bringing data together in a centralized repository is problematic, either for privacy, regulatory or practical reasons..This book explains recent progress in research and the state-of-the-art development of Federated Learning (FL), from the initial conception of the field to first applications and commercial use. To obtain this broad and deep overview, leading researchers address the different perspectives of federated learning: the core machine learning perspective, privacy and security, distributed systems, and specific application domains. Readers learn about the challenges faced in each of these areas, how they are interconnected, and how they are solved by state-of-the-
出版日期Book 2022
關(guān)鍵詞Deep Learning; Machine Learning; Artificial Intelligence; Vertically Partitioned Federated Learning; Neu
版次1
doihttps://doi.org/10.1007/978-3-030-96896-0
isbn_softcover978-3-030-96898-4
isbn_ebook978-3-030-96896-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Federated Learning影響因子(影響力)




書目名稱Federated Learning影響因子(影響力)學(xué)科排名




書目名稱Federated Learning網(wǎng)絡(luò)公開度




書目名稱Federated Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Federated Learning被引頻次




書目名稱Federated Learning被引頻次學(xué)科排名




書目名稱Federated Learning年度引用




書目名稱Federated Learning年度引用學(xué)科排名




書目名稱Federated Learning讀者反饋




書目名稱Federated Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:53 | 只看該作者
第141592主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:36:48 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:42:49 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:48:27 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:40:20 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:35:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:03:04 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:46:32 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:40:52 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 延寿县| 江油市| 略阳县| 新河县| 德清县| 定结县| 蓬安县| 澎湖县| 灵山县| 马关县| 泸溪县| 莆田市| 武宁县| 溆浦县| 桓台县| 青田县| 阜新市| 安吉县| 浦北县| 台中县| 和田县| 新化县| 独山县| 平塘县| 昭苏县| 临高县| 灵石县| 石棉县| 宿松县| 九龙县| 齐齐哈尔市| 肃北| 安溪县| 成安县| 五华县| 绥化市| 佛冈县| 漾濞| 泰顺县| 汶川县|