找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning; Qiang Yang,Yang Liu,Han Yu Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 32103|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:22:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Federated Learning
編輯Qiang Yang,Yang Liu,Han Yu
視頻videohttp://file.papertrans.cn/342/341591/341591.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Federated Learning;  Qiang Yang,Yang Liu,Han Yu Book 2020 Springer Nature Switzerland AG 2020
描述.How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private?..Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality.Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union‘s General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application..
出版日期Book 2020
版次1
doihttps://doi.org/10.1007/978-3-031-01585-4
isbn_softcover978-3-031-00457-5
isbn_ebook978-3-031-01585-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Federated Learning影響因子(影響力)




書目名稱Federated Learning影響因子(影響力)學(xué)科排名




書目名稱Federated Learning網(wǎng)絡(luò)公開度




書目名稱Federated Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Federated Learning被引頻次




書目名稱Federated Learning被引頻次學(xué)科排名




書目名稱Federated Learning年度引用




書目名稱Federated Learning年度引用學(xué)科排名




書目名稱Federated Learning讀者反饋




書目名稱Federated Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:26 | 只看該作者
第141591主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:49:09 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:35:53 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:24:05 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:35:48 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:29:36 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:46:57 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:51:16 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:22:27 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨鹿县| 政和县| 阿拉善右旗| 淳安县| 浦北县| 伊吾县| 通州市| 察雅县| 刚察县| 那坡县| 马山县| 交城县| 信宜市| 德安县| 长白| 临武县| 嘉义县| 南召县| 禄丰县| 沁源县| 蓬莱市| 鄂尔多斯市| 邹城市| 南宁市| 万州区| 汝南县| 镇巴县| 南雄市| 应城市| 蓬溪县| 尼木县| 平利县| 镇巴县| 太仓市| 津南区| 从化市| 永昌县| 温州市| 临高县| 班戈县| 秭归县|