找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning; Qiang Yang,Yang Liu,Han Yu Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 32103|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:22:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Federated Learning
編輯Qiang Yang,Yang Liu,Han Yu
視頻videohttp://file.papertrans.cn/342/341591/341591.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Federated Learning;  Qiang Yang,Yang Liu,Han Yu Book 2020 Springer Nature Switzerland AG 2020
描述.How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private?..Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality.Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union‘s General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application..
出版日期Book 2020
版次1
doihttps://doi.org/10.1007/978-3-031-01585-4
isbn_softcover978-3-031-00457-5
isbn_ebook978-3-031-01585-4Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Federated Learning影響因子(影響力)




書目名稱Federated Learning影響因子(影響力)學(xué)科排名




書目名稱Federated Learning網(wǎng)絡(luò)公開度




書目名稱Federated Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Federated Learning被引頻次




書目名稱Federated Learning被引頻次學(xué)科排名




書目名稱Federated Learning年度引用




書目名稱Federated Learning年度引用學(xué)科排名




書目名稱Federated Learning讀者反饋




書目名稱Federated Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:26 | 只看該作者
第141591主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:49:09 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:35:53 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:24:05 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:35:48 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:29:36 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:46:57 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:51:16 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:22:27 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禄丰县| 北碚区| 兴和县| 杭州市| 中江县| 冕宁县| 平舆县| 丁青县| 西林县| 汉川市| 任丘市| 郯城县| 沂源县| 勐海县| 汾阳市| 渑池县| 专栏| 靖宇县| 马龙县| 偃师市| 泰顺县| 武城县| 重庆市| 安龙县| 盐源县| 东源县| 疏附县| 富平县| 永平县| 辽中县| 余江县| 苍山县| 新平| 砀山县| 承德县| 宁远县| 香港| 嘉兴市| 天峨县| 徐水县| 万山特区|