找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Feature and Dimensionality Reduction for Clustering with Deep Learning; Frederic Ros,Rabia Riad Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 55860|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:46:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning
編輯Frederic Ros,Rabia Riad
視頻videohttp://file.papertrans.cn/342/341568/341568.mp4
概述Presents a synthesis of recent influencing techniques and "tricks" participating in advances in deep clustering.Highlights works by “family” to provide a more suitable starting point to develop a full
叢書名稱Unsupervised and Semi-Supervised Learning
圖書封面Titlebook: Feature and Dimensionality Reduction for Clustering with Deep Learning;  Frederic Ros,Rabia Riad Book 2024 The Editor(s) (if applicable) an
描述.This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) for a clustering perspective, with particular attention to the knowledge discovery question. The authors first present a synthesis of the major recent influencing techniques and "tricks" participating in recent advances in deep clustering, as well as a recall of the main deep learning architectures. Secondly, the book highlights the most popular works by “family” to provide a more suitable starting point from which to develop a full understanding of the domain. Overall, the book proposes a comprehensive up-to-date review of deep feature selection and deep clustering methods with particular attention to the knowledge discovery question and under a multi-criteria analysis. The book can be very helpful for young researchers, non-experts, and R&D AI engineers..
出版日期Book 2024
關(guān)鍵詞Contrastive learning; Deep clustering; Self-supervision; Pseudo-labeling; Deep feature selection; Pretext
版次1
doihttps://doi.org/10.1007/978-3-031-48743-9
isbn_softcover978-3-031-48745-3
isbn_ebook978-3-031-48743-9Series ISSN 2522-848X Series E-ISSN 2522-8498
issn_series 2522-848X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning影響因子(影響力)




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning網(wǎng)絡(luò)公開度




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning被引頻次




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning被引頻次學(xué)科排名




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning年度引用




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning年度引用學(xué)科排名




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning讀者反饋




書目名稱Feature and Dimensionality Reduction for Clustering with Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:19:08 | 只看該作者
第141568主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:49:31 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:18:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:38:59 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:51:45 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:50:25 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:38:00 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:10:49 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:47:23 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| 乌拉特前旗| 文水县| 庆安县| 鲁甸县| 南昌市| 新泰市| 吴忠市| 秀山| 黔西县| 嘉祥县| 清远市| 曲沃县| 彝良县| 普安县| 阿拉善右旗| 宁强县| 怀安县| 丹江口市| 敦煌市| 闽清县| 临邑县| 宜宾县| 客服| 南陵县| 莱西市| 丁青县| 徐水县| 江西省| 长沙市| 台山市| 邻水| 商丘市| 陆良县| 五常市| 塘沽区| 肇东市| 方正县| 陇川县| 普定县| 商河县|