找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Feature Learning and Understanding; Algorithms and Appli Haitao Zhao,Zhihui Lai,Xianyi Zhang Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 25860|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:41:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Feature Learning and Understanding
副標(biāo)題Algorithms and Appli
編輯Haitao Zhao,Zhihui Lai,Xianyi Zhang
視頻videohttp://file.papertrans.cn/342/341562/341562.mp4
概述Offers advanced feature learning methods, such as sparse learning, and deep-learning-based feature learning.Includes also traditional and cutting-edge feature learning methods.Contains the detailed th
叢書(shū)名稱Information Fusion and Data Science
圖書(shū)封面Titlebook: Feature Learning and Understanding; Algorithms and Appli Haitao Zhao,Zhihui Lai,Xianyi Zhang Book 2020 Springer Nature Switzerland AG 2020
描述.This book covers the essential concepts and strategies within traditional and cutting-edge feature learning methods thru both theoretical analysis and case studies. Good features give good models and it is usually not classifiers but features that determine the effectiveness of a model. In this book, readers can find not only traditional feature learning methods, such as principal component analysis, linear discriminant analysis, and geometrical-structure-based methods, but also advanced feature learning methods, such as sparse learning, low-rank decomposition, tensor-based feature extraction, and deep-learning-based feature learning. Each feature learning method has its own dedicated chapter that explains how it is theoretically derived and shows how it is implemented for real-world applications. Detailed illustrated figures are included for better understanding. This book can be used by students, researchers, and engineers looking for a reference guide for popular methods of feature learning and machine intelligence..
出版日期Book 2020
關(guān)鍵詞feature learning; machine learning; pattern recognition; data analysis; principal component analysis; lin
版次1
doihttps://doi.org/10.1007/978-3-030-40794-0
isbn_softcover978-3-030-40796-4
isbn_ebook978-3-030-40794-0Series ISSN 2510-1528 Series E-ISSN 2510-1536
issn_series 2510-1528
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Feature Learning and Understanding影響因子(影響力)




書(shū)目名稱Feature Learning and Understanding影響因子(影響力)學(xué)科排名




書(shū)目名稱Feature Learning and Understanding網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Feature Learning and Understanding網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Feature Learning and Understanding被引頻次




書(shū)目名稱Feature Learning and Understanding被引頻次學(xué)科排名




書(shū)目名稱Feature Learning and Understanding年度引用




書(shū)目名稱Feature Learning and Understanding年度引用學(xué)科排名




書(shū)目名稱Feature Learning and Understanding讀者反饋




書(shū)目名稱Feature Learning and Understanding讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:08 | 只看該作者
第141562主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:10:49 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:36:02 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:21:15 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:20:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:02:21 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:24:52 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:07:09 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:30:58 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆德县| 罗江县| 海兴县| 桦川县| 连江县| 奉贤区| 株洲县| 临朐县| 五家渠市| 锦屏县| 赫章县| 淅川县| 佳木斯市| 启东市| 安西县| 五常市| 江油市| 永和县| 威海市| 彩票| 金坛市| 南阳市| 吉首市| 深水埗区| 双流县| 北川| 瑞安市| 乌兰察布市| 教育| 吉林省| 德惠市| 榆社县| 高邮市| 营口市| 怀来县| 上栗县| 扬中市| 江华| 左权县| 温宿县| 科技|