找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fast Fourier Transform and Convolution Algorithms; Henri J. Nussbaumer Textbook 1982Latest edition Springer-Verlag Berlin Heidelberg 1982

[復(fù)制鏈接]
查看: 9967|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:53:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fast Fourier Transform and Convolution Algorithms
編輯Henri J. Nussbaumer
視頻videohttp://file.papertrans.cn/342/341277/341277.mp4
叢書名稱Springer Series in Information Sciences
圖書封面Titlebook: Fast Fourier Transform and Convolution Algorithms;  Henri J. Nussbaumer Textbook 1982Latest edition Springer-Verlag Berlin Heidelberg 1982
描述In the first edition of this book, we covered in Chapter 6 and 7 the applications to multidimensional convolutions and DFT‘s of the transforms which we have introduced, back in 1977, and called polynomial transforms. Since the publication of the first edition of this book, several important new developments concerning the polynomial transforms have taken place, and we have included, in this edition, a discussion of the relationship between DFT and convolution polynomial transform algorithms. This material is covered in Appendix A, along with a presentation of new convolution polynomial transform algorithms and with the application of polynomial transforms to the computation of multidimensional cosine transforms. We have found that the short convolution and polynomial product algorithms of Chap. 3 have been used extensively. This prompted us to include, in this edition, several new one-dimensional and two-dimensional polynomial product algorithms which are listed in Appendix B. Since our book is being used as part of several graduate-level courses taught at various universities, we have added, to this edition, a set of problems which cover Chaps. 2 to 8. Some of these problems serve
出版日期Textbook 1982Latest edition
關(guān)鍵詞Algorithms; Digitales Filter; Faltung (Math; ); Fourier; Fourier-Transformation; convolution
版次2
doihttps://doi.org/10.1007/978-3-642-81897-4
isbn_softcover978-3-540-11825-1
isbn_ebook978-3-642-81897-4Series ISSN 0720-678X
issn_series 0720-678X
copyrightSpringer-Verlag Berlin Heidelberg 1982
The information of publication is updating

書目名稱Fast Fourier Transform and Convolution Algorithms影響因子(影響力)




書目名稱Fast Fourier Transform and Convolution Algorithms影響因子(影響力)學(xué)科排名




書目名稱Fast Fourier Transform and Convolution Algorithms網(wǎng)絡(luò)公開度




書目名稱Fast Fourier Transform and Convolution Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fast Fourier Transform and Convolution Algorithms被引頻次




書目名稱Fast Fourier Transform and Convolution Algorithms被引頻次學(xué)科排名




書目名稱Fast Fourier Transform and Convolution Algorithms年度引用




書目名稱Fast Fourier Transform and Convolution Algorithms年度引用學(xué)科排名




書目名稱Fast Fourier Transform and Convolution Algorithms讀者反饋




書目名稱Fast Fourier Transform and Convolution Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:51 | 只看該作者
第141277主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:42:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:15:08 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:13:30 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:39:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:06:47 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:30:57 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:49:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:58:18 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邻水| 中卫市| 常熟市| 渭源县| 兴山县| 盘锦市| 习水县| 八宿县| 耿马| 千阳县| 重庆市| 屏边| 清徐县| 武陟县| 容城县| 新竹县| 宁晋县| 延安市| 安化县| 泰宁县| 三河市| 贵港市| 象山县| 秦安县| 海南省| 手游| 全州县| 芮城县| 济阳县| 蓝田县| 和顺县| 南通市| 崇义县| 勐海县| 黄大仙区| 慈利县| 久治县| 楚雄市| 光山县| 青阳县| 本溪|