找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fast Fourier Transform Algorithms for Parallel Computers; Daisuke Takahashi Book 2019 Springer Nature Singapore Pte Ltd. 2019 Fast Fourier

[復(fù)制鏈接]
查看: 6794|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:54:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fast Fourier Transform Algorithms for Parallel Computers
編輯Daisuke Takahashi
視頻videohttp://file.papertrans.cn/342/341276/341276.mp4
概述Provides implementation details on FFTs for parallel computers.Features a wealth of program examples in pseudo-code.The first book exclusively focused on this topic
叢書名稱High-Performance Computing Series
圖書封面Titlebook: Fast Fourier Transform Algorithms for Parallel Computers;  Daisuke Takahashi Book 2019 Springer Nature Singapore Pte Ltd. 2019 Fast Fourier
描述Following an introduction to the basis of the fast Fourier transform (FFT), this book focuses on the implementation details on FFT for parallel computers. FFT is an efficient implementation of the discrete Fourier transform (DFT), and is widely used for many applications in engineering, science, and mathematics. Presenting many algorithms in pseudo-code and a complexity analysis, this book offers a valuable reference guide for graduate students, engineers, and scientists in the field who wish to apply FFT to large-scale problems..Parallel computation is becoming indispensable in solving the large-scale problems increasingly arising in a wide range of applications. The performance of parallel supercomputers is steadily improving, and it is expected that a massively parallel system with hundreds of thousands of compute nodes equipped with multi-core processors and accelerators will be available in the near future. Accordingly, the book also provides up-to-date computational techniquesrelevant to the FFT in state-of-the-art parallel computers...?Following the introductory chapter, Chapter 2 introduces readers to the DFT and the basic idea of the FFT. Chapter 3 explains mixed-radix FFT
出版日期Book 2019
關(guān)鍵詞Fast Fourier Transform; FFT; Parallel Computer; Supercomputer; High Performance Computing; Discrete Fouri
版次1
doihttps://doi.org/10.1007/978-981-13-9965-7
isbn_softcover978-981-13-9967-1
isbn_ebook978-981-13-9965-7Series ISSN 2662-3420 Series E-ISSN 2662-3439
issn_series 2662-3420
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Fast Fourier Transform Algorithms for Parallel Computers影響因子(影響力)




書目名稱Fast Fourier Transform Algorithms for Parallel Computers影響因子(影響力)學(xué)科排名




書目名稱Fast Fourier Transform Algorithms for Parallel Computers網(wǎng)絡(luò)公開度




書目名稱Fast Fourier Transform Algorithms for Parallel Computers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fast Fourier Transform Algorithms for Parallel Computers被引頻次




書目名稱Fast Fourier Transform Algorithms for Parallel Computers被引頻次學(xué)科排名




書目名稱Fast Fourier Transform Algorithms for Parallel Computers年度引用




書目名稱Fast Fourier Transform Algorithms for Parallel Computers年度引用學(xué)科排名




書目名稱Fast Fourier Transform Algorithms for Parallel Computers讀者反饋




書目名稱Fast Fourier Transform Algorithms for Parallel Computers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:35 | 只看該作者
第141276主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:27:39 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:40:22 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:35:01 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:06:18 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:05:15 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:14:04 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:50:56 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:50:09 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善右旗| 惠来县| 德庆县| 甘孜县| 洪泽县| 南昌市| 阿拉善右旗| 庆阳市| 福泉市| 曲麻莱县| 会理县| 惠安县| 隆子县| 保德县| 望奎县| 高密市| 新泰市| 建宁县| 淮北市| 长治市| 五峰| 桑日县| 石首市| 虹口区| 江城| 毕节市| 贵溪市| 伊金霍洛旗| 双柏县| 大庆市| 瓮安县| 吉木萨尔县| 廉江市| 改则县| 和静县| 林州市| 雅江县| 岑溪市| 伊金霍洛旗| 桦南县| 隆尧县|