找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: eQTL Analysis; Methods and Protocol Xinghua Mindy Shi Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020 mining.g

[復(fù)制鏈接]
樓主: 貧血
21#
發(fā)表于 2025-3-25 03:46:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:35 | 只看該作者
24#
發(fā)表于 2025-3-25 16:55:22 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:52 | 只看該作者
Genome-Wide Composite Interval Mapping (GCIM) of Expressional Quantitative Trait Loci in Backcross Pgenetic model to develop genome-wide composite interval mapping (GCIM). This chapter covers the GCIM procedure in a backcross or doubled haploid populations. We describe the genetic model, parameter estimation, multi-locus genetic model, hypothesis tests, and software. Finally, some issues related to the GCIM method are discussed.
26#
發(fā)表于 2025-3-26 02:32:16 | 只看該作者
Expression Quantitative Trait Loci (eQTL) Analysis in Cancermorigenesis and development. Here we describe a detailed workflow for identifying eQTLs in cancer using existing packages and software. The key package is Matrix eQTL, which requires input data of genotypes, genes expression, and covariates. This pipeline can be easily applied in a related research field.
27#
發(fā)表于 2025-3-26 06:35:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:38:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:04:04 | 只看該作者
Statistical and Machine Learning Methods for eQTL Analysist distinct computational and statistical challenges that require advanced methodological development to overcome. In recent years, many statistical and machine learning methods for eQTL analysis have been developed with the ability to provide a more complex perspective towards the identification of
30#
發(fā)表于 2025-3-26 17:16:28 | 只看該作者
Sparse Regression Models for Unraveling Group and Individual Associations in eQTL Mapping. We perform extensive experiments on both simulated datasets and yeast datasets to demonstrate the effectiveness and efficiency of the proposed method. The results show that . can effectively detect both individual and group-wise signals and outperform the state-of-the-arts by a large margin. This
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 沙雅县| 襄垣县| 客服| 马边| 资中县| 吉林省| 兴安盟| 晋城| 奇台县| 榕江县| 太湖县| 天峨县| 耒阳市| 昆山市| 元谋县| 涟水县| 波密县| 馆陶县| 通许县| 峨山| 泽州县| 汤阴县| 会东县| 中阳县| 霍邱县| 杂多县| 敖汉旗| 垦利县| 名山县| 阜新| 达拉特旗| 杭州市| 临邑县| 慈利县| 浦县| 洛南县| 石泉县| 林芝县| 珠海市| 罗甸县|