找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 25th International C Lazaros Iliadis,Ilias Maglogiannis,Chrisina Jayne Conference proceedings

[復(fù)制鏈接]
樓主: GLAZE
11#
發(fā)表于 2025-3-23 13:39:49 | 只看該作者
An Autoencoder-Based Approach for?Anomaly Detection of?Machining Processes Using Acoustic Emission Stection of CNC machining processes is presented. To this end, acoustic emission signals of a real-world use case are considered. To prove the effectiveness of the proposed system, a comparison with an Isolation Forest algorithm, a well-known benchmark in this field, is made. The results show an impr
12#
發(fā)表于 2025-3-23 14:02:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:24:09 | 只看該作者
Deep Echo State Networks for?Modelling of?Industrial Systemsel of each tank. We conducted numerical experiments to examine how the performance of the predictions is affected by the number of layers. Our findings indicate that increasing the number of recurrent layers leads to better predictions, and also highlight noteworthy differences in the dynamics of th
14#
發(fā)表于 2025-3-23 22:45:25 | 只看該作者
Empirical Insights into?Deep Learning Models for?Misinformation Classification Within Constrained DaOur findings suggest that training language models on smaller datasets while considering key indicators of performance like model architecture and learned representation transfer is more beneficial than pre-training the models with past, related data.
15#
發(fā)表于 2025-3-24 05:49:29 | 只看該作者
Enhancing Bandwidth Efficiency for?Video Motion Transfer Applications Using Deep Learning Based Keypion with VRNN based prediction for both video animation and reconstruction is demonstrated on three diverse datasets. For real-time applications, our results show the effectiveness of our proposed architecture by enabling up to 2. additional bandwidth reduction over existing keypoint based video mot
16#
發(fā)表于 2025-3-24 07:22:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:24 | 只看該作者
HEADS: Hybrid Ensemble Anomaly Detection System for Internet-of-Things Networks improve the voting strategy for ensemble learning. The ensemble prediction is assisted by a Random Forest-based model obtained through the best F1 score for each label through dataset subset selection. The efficiency of HEADS is evaluated using the publicly available CICIoT2023 dataset. The evaluat
18#
發(fā)表于 2025-3-24 17:53:12 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:50 | 只看該作者
1865-0929 5 submissions. They deal with reinforcement; natural language; biomedical applications; classificaiton; deep learning; convolutional neural networks.?.978-3-031-62494-0978-3-031-62495-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
20#
發(fā)表于 2025-3-25 00:08:06 | 只看該作者
1865-0929 24, held in Corfu, Greece, during June 27-30, 2024.?..The 41 full and 2 short papers included in this book were carefully reviewed and selected from 85 submissions. They deal with reinforcement; natural language; biomedical applications; classificaiton; deep learning; convolutional neural networks.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清河县| 靖宇县| 喜德县| 泰安市| 定南县| 电白县| 四子王旗| 温宿县| 泸溪县| 油尖旺区| 建始县| 且末县| 双鸭山市| 噶尔县| 西丰县| 阳东县| 山东省| 姜堰市| 衡山县| 甘洛县| 琼结县| 澜沧| 贺兰县| 徐州市| 灵宝市| 德阳市| 六枝特区| 南汇区| 福清市| 遂川县| 平原县| 佳木斯市| 固镇县| 浑源县| 南涧| 井研县| 独山县| 社旗县| 石楼县| 天祝| 紫金县|