找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Challenges in Intelligent Management Information Systems; Proceedings of 26th Marcin Hernes,Jaros?aw W?tróbski Conference proceed

[復制鏈接]
樓主: MEDAL
21#
發(fā)表于 2025-3-25 06:03:56 | 只看該作者
22#
發(fā)表于 2025-3-25 10:13:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:21:51 | 只看該作者
https://doi.org/10.1007/978-1-4615-7416-3 learning methods. Such an approach allows combining several different strategies to detect fake news detections into a unified, cohesive methodology. The performed experiments that used the widely known “Liar, Liar Pants on Fire” benchmark dataset yielded promising results which surpassed outcomes described in the literature.
24#
發(fā)表于 2025-3-25 18:18:13 | 只看該作者
25#
發(fā)表于 2025-3-25 23:43:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:36:29 | 只看該作者
Supporting Algorithmic Trading with?Machine Learning: Progress in?Backend Technologymunity, with most recent machine learning libraries being Python-based. In this paper, Python optimization is tested on the machine learning models frequently used in algorithmic trading. The results are compared between four different Python versions: Python 3.7, Python 3.8, Python 3.9, and Python 3.11.
27#
發(fā)表于 2025-3-26 04:41:15 | 只看該作者
https://doi.org/10.1007/978-1-4615-2530-1elected companies. Based on the collected data, the association rules were extracted using the Apriori algorithm. While the obtained results are very promising, however, one should also estimate the rate of return for the interrelated transactions to determine the true and ultimate value of discovered relationships.
28#
發(fā)表于 2025-3-26 12:15:44 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:20:07 | 只看該作者
Forecasting e-learning Course Purchases Using Deep Learning Based on Customer Retentiongraphic data. From the business point of view, it is a crucial benefit for new customers who are not registered in the customer relationship management system, but use anonymously this system via the website.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
曲麻莱县| 柯坪县| 新宁县| 沂南县| 防城港市| 新化县| 民乐县| 轮台县| 海伦市| 剑河县| 祁连县| 曲周县| 南和县| 怀化市| 新密市| 宿松县| 海南省| 龙口市| 南通市| 徐水县| 波密县| 伽师县| 昭苏县| 陕西省| 京山县| 黄陵县| 洪江市| 会泽县| 兰溪市| 武汉市| 满城县| 枣强县| 视频| 正阳县| 泗洪县| 榆林市| 甘南县| 奉新县| 中西区| 乌鲁木齐县| 巨野县|