找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Online Learning Algorithms for Total Least Square Problems; Xiangyu Kong,Dazheng Feng Book 2024 Science Press 2024 TLS.Total Lea

[復(fù)制鏈接]
查看: 29113|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:03:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Efficient Online Learning Algorithms for Total Least Square Problems
編輯Xiangyu Kong,Dazheng Feng
視頻videohttp://file.papertrans.cn/321/320482/320482.mp4
概述Developments of the Total Least Square (TLS) algorithms for parameter estimation and adaptive filtering.Reviews the basic TLS algorithms and derives novel method with detailed steps.Provides detailed
叢書名稱Engineering Applications of Computational Methods
圖書封面Titlebook: Efficient Online Learning Algorithms for Total Least Square Problems;  Xiangyu Kong,Dazheng Feng Book 2024 Science Press 2024 TLS.Total Lea
描述This book reports the developments of the Total Least Square (TLS) algorithms for parameter estimation and adaptive filtering. Specifically, it introduces the authors’ latest achievements in the past 20 years, including the recursive TLS algorithms, the approximate inverse power iteration TLS algorithm, the neural based MCA algorithm, the neural based SVD algorithm, the neural based TLS algorithm, the TLS algorithms under non-Gaussian noises, performance analysis methods of TLS algorithms, etc. In order to faster the understanding and mastering of the new methods provided in this book for readers, before presenting each new method in each chapter, a specialized section is provided to review the closely related several basis models. Throughout the book, large of procedure of new methods are provided, and all new algorithms or methods proposed by us are tested and verified by numerical simulations or actual engineering applications. Readers will find illustrative demonstration examples on a range of industrial processes to study. Readers will find out the present deficiency and recent developments of the TLS parameter estimation fields, and learn from the the authors’ latest achievem
出版日期Book 2024
關(guān)鍵詞TLS; Total Least Square; Orthogonal Regression; Neural-Based Orthogonal Regression; the Errors-in-varian
版次1
doihttps://doi.org/10.1007/978-981-97-1765-1
isbn_softcover978-981-97-1767-5
isbn_ebook978-981-97-1765-1Series ISSN 2662-3366 Series E-ISSN 2662-3374
issn_series 2662-3366
copyrightScience Press 2024
The information of publication is updating

書目名稱Efficient Online Learning Algorithms for Total Least Square Problems影響因子(影響力)




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems影響因子(影響力)學(xué)科排名




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems網(wǎng)絡(luò)公開度




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems被引頻次




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems被引頻次學(xué)科排名




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems年度引用




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems年度引用學(xué)科排名




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems讀者反饋




書目名稱Efficient Online Learning Algorithms for Total Least Square Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:16 | 只看該作者
地板
發(fā)表于 2025-3-22 06:57:16 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:47 | 只看該作者
2662-3366 derives novel method with detailed steps.Provides detailed This book reports the developments of the Total Least Square (TLS) algorithms for parameter estimation and adaptive filtering. Specifically, it introduces the authors’ latest achievements in the past 20 years, including the recursive TLS al
6#
發(fā)表于 2025-3-22 14:58:54 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:50:12 | 只看該作者
Total Least Square Problems, orthogonal data fitting-the EXIN neural networks. John Wiley & Sons Inc, Publication, 2010), who considered an approximate method for solving the matrix equation .?=?. when in both . and . there exist errors.
9#
發(fā)表于 2025-3-23 02:34:07 | 只看該作者
Neural-Based TLS Algorithms,mputational complexity compared with other iterative methods, which make them more suitable in real-time application. There are three neural ways of solving TLS problem: (1) One is a neural network for the SVD, which finds the right singular vector associated with the smallest singular value of the
10#
發(fā)表于 2025-3-23 07:12:56 | 只看該作者
TLS Algorithm Under Non-Gaussian Noises,d that merely minimizes the sum of squared output error, the TLS method views the estimation problem as a fitting problem with noise existing in both input and output data and its goal is to minimize the sum of squared “total” perturbation/ error required to fit the input.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民权县| 保亭| 儋州市| 沛县| 土默特左旗| 准格尔旗| 台前县| 桂阳县| 城市| 晋宁县| 南投县| 公主岭市| 上栗县| 峡江县| 胶南市| 休宁县| 密山市| 论坛| 苏州市| 张掖市| 桃江县| 兴安盟| 普宁市| 山丹县| 平顺县| 武冈市| 洱源县| 霍州市| 昌宁县| 四子王旗| 诸城市| 蒙自县| 琼海市| 镇康县| 南通市| 鄄城县| 上思县| 科尔| 邢台市| 玉环县| 长葛市|